SNOSB48E October   2011  – August 2015 LM3242

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 System Characteristics
    7. 6.7 Timing Requirements
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Circuit Operation
      2. 7.3.2 Internal Synchronous Rectification
      3. 7.3.3 Current Limiting
      4. 7.3.4 Dynamically Adjustable Output Voltage
      5. 7.3.5 Thermal Overload Protection
      6. 7.3.6 Soft Start
    4. 7.4 Device Functional Modes
      1. 7.4.1 PWM Mode Operation
      2. 7.4.2 Bypass Mode Operation
      3. 7.4.3 ECO Mode Operation
      4. 7.4.4 Sleep Mode Operation
      5. 7.4.5 Shutdown Mode
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Setting The Output Voltage
      2. 8.1.2 FB
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Inductor Selection
          1. 8.2.2.1.1 Method 1
          2. 8.2.2.1.2 Method 2
        2. 8.2.2.2 Capacitor Selection
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 PCB Considerations
        1. 10.1.1.1 Energy Efficiency
        2. 10.1.1.2 EMI
      2. 10.1.2 Manufacturing Considerations
      3. 10.1.3 LM3242 Evaluation Board
        1. 10.1.3.1 Component Placement
    2. 10.2 Layout Examples
    3. 10.3 DSBGA Package Assembly and Use
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VIN to SGND −0.2 6 V
PGND to SGND −0.2 0.2 V
EN, VCON, BPEN (SGND − 0.2) (VIN + 0.2) w/ 6 V V
SW, FB (PGND – 0.2) (VIN + 0.2) V
Continuous power dissipation(2) Internally limited
Maximum lead temperature (soldering, 10 sec) 260 °C
Junction temperature, TJ-MAX 150 °C
Storage temperature, Tstg −65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ = 150°C (typical) and disengages at TJ = 125°C (typical).

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1250
Machine model ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)
MIN NOM MAX UNIT
Input voltage 2.7 5.5 V
Recommended load current 0 750 mA
 PWM mode 0 750 mA
 Bypass mode 0 1000 mA
Junction temperature, TJ −30 125 °C
Ambient temperature, TA(2) −30 90 °C
(1) All voltages are with respect to the potential at the GND pins.
(2) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be de-rated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP = 125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance of the part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX).

6.4 Thermal Information

THERMAL METRIC(1) LM3242 UNIT
YFQ (DSBGA)
9 PINS
RθJA Junction-to-ambient thermal resistance 85 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

All typical limits in are for TA = TJ = 25°C; all minimum and maximum limits apply over the full operating ambient temperature range (−30°C ≤ TA = TJ ≤ +90°C). Unless otherwise noted, all specifications apply to the Typical Application with VIN = EN = 3.6 V, and BPEN = NC = 0 V.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VFB,MIN Feedback voltage at minimum setting PWM mode, VCON = 0.16 V(1) 0.38 0.4 0.42 V
VFB,MAX Feedback voltage at maximum setting PWM mode, VCON = 1.44 V, VIN = 4 V 3.55 3.6 3.65 V
ISHDN Shutdown supply current EN = SW = VCON = FB = BPEN = NC = 0 V(2) 0.1 1 µA
IQ_PWM PWM mode quiescent current PWM mode, No switching
VCON = 0.13 V, FB = 1 V(3)
650 795 µA
IQ_SLEEP Low-power SLEEP mode EN = VIN, BPEN = NC = 0 V, SW = TriState
VCON < 0.08 V(3)
60 80 µA
IQ_ECO ECO mode Quiescent current ECO mode, No switching
VCON = 0.8 V, FB = 2.05 V(3)
60 80 µA
RDSON (P) Pin-pin resistance for PFET VIN = VGS = 3.6 V, ISW = 200 mA 170 260
RDSON (N) Pin-pin resistance for NFET VIN = VGS = 3.6 V, ISW = −200 mA 110 200
RDSON (BP) Pin-Pin resistance for BPFET VIN = VGS = 3.1 V, ISW = −200 mA 80 110
ILIM P PFET switch peak current limit See(4) 1300 1450 1600 mA
ILIM BP BPFET switch peak current limit VFB = VIN − 1 V(4) 310 400 mA
FOSC Internal oscillator frequency 5.7 6 6.3 MHz
VIH EN, BPEN logic high input threshold 1.2 V
VIL EN, BPEN logic low input threshold 0.4 V
Gain VCON to VOUT gain 0.16 V ≤ VCON ≤ 1.44 V(5) 2.5 V/V
IVCON VCON pin leakage current VCON = 1 V ±1 µA
VBP,NEG Auto bypass detection negative threshold VCON = 1.2 V (VOUT-SET = 3 V)
VIN = 3.2 V, RL = 6 Ω, IOUT = 500 mA(6)
165 200 235 mV
VBP,POS Auto bypass detection positive threshold VCON = 1.2 V (VOUT-SET = 3 V)
VIN = 3.25 V, RL = 6 Ω, IOUT = 500 mA(7)
215 250 285 mV
IBP,SLEW Auto bypass IOUT slew current BPEN = High, Forced bypass 1600 mA
(1) All 0.4-V VOUT specifications are at steady-state only.
(2) Shutdown current includes leakage current of PFET.
(3) IQ specified here is when the part is not switching under test mode conditions. For operating quiescent current at no load, refer to Typical Characteristics.
(4) Current limit is built-in, fixed, and not adjustable.
(5) Care must be taken to keep the VCON pin voltage less than the VIN pin voltage as this can place the part into a manufacturing test mode.
(6) Entering Bypass mode VIN is compared to the programmed output voltage (2.5 × VCON). When VIN − (2.5 × VCON) falls below VBP,NEG longer than TBP,NEG, the Bypass FET turns on, and the switching FET turns on.
(7) Bypass mode is exited when VIN − (2.5 × VCON) exceeds VBP,POS longer than TBP,POS, and PWM mode resumes. The hysteresis for the bypass detection threshold VBP,POS – VBP,NEG is always positive and will be approximately 50 mV.

6.6 System Characteristics

The following spec table entries are ensured by design providing the component values in the Typical Application are used. These parameters are not ensured by production testing. Minimum and Maximum values apply over the full operating ambient temperature range (−30°C ≤ TA ≤ +90°C) and over the VIN range = 2.7 V to 5.5 V unless otherwise specified. L = 0.5 µH, DCR = 50 mΩ, CIN = 10 µF, 6.3 V, 0603 (1608), COUT = 4.7 µF, 6.3 V, 0402.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
D Maximum duty cycle 100%
RBP Bypass mode resistance(1) VIN = VGS = 3.1 V, IOUT = –500 mA
VCON > 1.16 V
75
IOUT Maximum output current capability 2.7 V ≤ VIN ≤ 5.5 V
2.5 × VCON ≤ VIN − 285 mV
750 mA
2.7 V ≤ VIN ≤ 5.5 V
2.5 × VCON ≥ VIN – 165 mV, Bypass mode
1000
CVCON VCON input capacitance VCON = 1 V, Test frequency = 100 KHz < 1 pF
VOUT Linearity VCON range 0.16 V to 1.44 V 0 mA ≤ IOUT ≤ 750 mA(2) −3% 3%
−50 50 mV
η Efficiency VIN = 3.6 V, VOUT = 0.8 V
IOUT = 10 mA, ECO mode
75%
VIN = 3.6 V, VOUT = 1.8 V
IOUT = 200 mA, PWM mode
90%
VIN = 3.9 V, VOUT = 3.3 V
IOUT = 500 mA, PWM mode
95%
LINE TR Line transient response VIN = 3.6 V to 4.2 V, TR = TF = 10 µs,
IOUT = 100 mA, VOUT = 0.8V
50 mVpk
LOAD TR Load transient response VIN = 3.1 V/3.6 V/4.5 V, VOUT = 0.8 V,
IOUT = 50 mA to 150 mA
TR = TF = 0.1 µs
50 mVpk
(1) Total resistance in Bypass mode. Total includes the Bypass FET resistance in parallel with the PWM switch path resistance (PFET resistance and series inductor parasistic resistance.)
(2) Linearity limits are ±3% or ±50 mV, whichever is larger. VOUT is monotonic in nature with respect to VCON input.

6.7 Timing Requirements

MIN NOM MAX UNIT
TVCON_TR VOUT rise time, VCON change to 90%
VIN = 3.7 V, VOUT = 1.4 V to 3.4 V
0.1 µs < VCON_TR < 1 µs, RL = 12 Ω
9 µs
VOUT fall time VCON change to 10%
VIN = 3.7 V, VOUT = 3.4 V to 1.4 V
0.1 µs < VCON_TF < 1 µs, RL = 12 Ω
9 µs
TON Turnon time (time for output to reach 95% final value after Enable low-to-high transition)
EN = Low-to-High, VIN = 4.2 V, VOUT = 3.4 V
IOUT = < 1 mA, COUT = 4.7 µF
50(1) µs
TBP, NEG Auto bypass detect negative threshold delay time(2) 10 µs
TBP, POS Auto bypass detect positive threshold delay time(3) 0.1 µs
(1) This parameter is not production-limit tested.
(2) Entering Bypass mode VIN is compared to the programmed output voltage (2.5 × VCON). When VIN − (2.5 × VCON) falls below VBP,NEG longer than TBP,NEG, the Bypass FET turns on, and the switching FET turns on.
(3) Bypass mode is exited when VIN − (2.5 × VCON) exceeds VBP,POS longer than TBP,POS, and PWM mode resumes. The hysteresis for the bypass detection threshold VBP,POS – VBP,NEG is always be positive and will be approximately 50 mV.

6.8 Typical Characteristics

VIN = EN = 3.6 V, L = 0.5 µH, CIN = 10 µF, COUT = 4.7 µF and TA = 25°C, unless otherwise noted.
LM3242 30122231.png
SW = VCON = EN = 0 V
Figure 1. Shutdown Current vs Temperature
LM3242 30122258.gif
Figure 3. ECO Mode Supply Current vs Output Voltage (Closed Loop, Switching, No Load)
LM3242 30122216.gif
VOUT = 2 V RLOAD=10 Ω
Figure 5. Output Voltage vs Supply Voltage
LM3242 30122232.png
FB = 1 V VCON = 0.13 V
Figure 2. Quiescent Current vs Supply Voltage (No Switching)
LM3242 30122234.png
VOUT = 2 V IOUT = 200 mA
Figure 4. Switching Frequency vs Temperature
LM3242 30122257.gif
VOUT = 3.4 V
Figure 6. Output Voltage vs Output Current
LM3242 30122222.gif
VOUT = 0.6 V
Figure 7. Output Voltage vs Output Current
LM3242 30122244.png
Figure 9. ECO-PWM Mode Threshold Current vs Output Voltage
LM3242 30122239.png
VOUT = 2 V
Figure 11. Closed-Loop Current Limit vs Temperature
LM3242 30122213.gif
VOUT = 2 V
Figure 13. Efficiency vs Output Current
LM3242 30122215.gif
RLOAD = 10 Ω
Figure 15. Efficiency vs Output Voltage
LM3242 30122248.png
Figure 17. NFET RDSON vs Supply Voltage
LM3242 30122230.png
VIN = 4.2 V VOUT = 3.4 V RLOAD =10 Ω
Figure 19. Shutdown
LM3242 30122249.png
RLOAD = 10 Ω
Figure 21. Low VCON Voltage vs Output Voltage
LM3242 30122225.gif
VOUT = 2 V
Figure 8. Output Voltage vs Output Current
LM3242 30122245.png
Figure 10. PWM-ECO Mode Threshold Current vs Output Voltage
LM3242 30122212.gif
VOUT = 0.8 V
Figure 12. Efficiency vs Output Current
LM3242 30122214.gif
VOUT = 3.3 V
Figure 14. Efficiency vs Output Current
LM3242 30122247.png
Figure 16. PFET RDSON vs Supply Voltage
LM3242 30122237.png
Figure 18. EN High Threshold vs Supply Voltage
LM3242 30122228.png
VOUT = 2 V RLOAD =10 Ω → 0 Ω
Figure 20. Timed Current Limit