JAJSFC4 April   2018 LM3478Q-Q1

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     Device Images
      1.      一般的な高効率昇圧(ブースト)コンバータ
  4. 改訂履歴
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings - LM3478Q-Q1
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Overvoltage Protection
      2. 7.3.2 Slope Compensation Ramp
      3. 7.3.3 Frequency Adjust/Shutdown
      4. 7.3.4 Short-Circuit Protection
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Typical High Efficiency Step-Up (Boost) Converter
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1  Custom Design with WEBENCH Tools
          2. 8.2.1.2.2  Power Inductor Selection
          3. 8.2.1.2.3  Programming the Output Voltage
          4. 8.2.1.2.4  Setting the Current Limit
          5. 8.2.1.2.5  Current Limit with External Slope Compensation
          6. 8.2.1.2.6  Power Diode Selection
          7. 8.2.1.2.7  Power MOSFET Selection
          8. 8.2.1.2.8  Input Capacitor Selection
          9. 8.2.1.2.9  Output Capacitor Selection
          10. 8.2.1.2.10 Compensation
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Typical SEPIC Converter
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1 Power MOSFET Selection
          2. 8.2.2.2.2 Power Diode Selection
          3. 8.2.2.2.3 Selection of Inductors L1 and L2
          4. 8.2.2.2.4 Sense Resistor Selection
          5. 8.2.2.2.5 Sepic Capacitor Selection
          6. 8.2.2.2.6 Input Capacitor Selection
          7. 8.2.2.2.7 Output Capacitor Selection
        3. 8.2.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11デバイスおよびドキュメントのサポート
    1. 11.1 WEBENCHツールによるカスタム設計
    2. 11.2 ドキュメントの更新通知を受け取る方法
    3. 11.3 ドキュメントのサポート
      1. 11.3.1 関連資料
    4. 11.4 商標
    5. 11.5 静電気放電に関する注意事項
    6. 11.6 Glossary
  12. 12メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Current Limit with External Slope Compensation

RSL is used to add additional slope compensation when required. It is not necessary in most designs and RSL should be no larger than necessary. Select RSL according to Equation 22.

Equation 22. LM3478Q-Q1 10135598.gif

Where RSEN is the selected value based on current limit. With RSL installed, the control signal includes additional external slope to stabilize the loop, which will also have an effect on the current limit threshold. Therefore, the current limit threshold must be re-verified, as illustrated in Equation 23, Equation 24, and Equation 25 below.

Equation 23. VCS = VSENSE – (D x (VSL + ΔVSL))

Where ΔVSL is the additional slope compensation generated as discussed in the slope compensation ramp section and calculated using Equation 24.

Equation 24. ΔVSL = 40 µA x RSL

This changes the equation for current limit (or RSEN) as shown in Equation 25.

Equation 25. LM3478Q-Q1 10135599.gif

The RSEN and RSL values may have to be calculated iteratively in order to achieve both the desired current limit and stable operation. In some designs RSL can also help to filter noise on the ISEN pin.

If the inductor is selected such that ripple current is the recommended 30% value, and the current limit threshold is 120% of the maximum peak, a simpler method can be used to determine RSEN. Equation 26 below will provide optimum stability without RSL, provided that the above 2 conditions are met.

Equation 26. LM3478Q-Q1 101355a0.gif