JAJSDX2C September   2017  – October 2021 LM5150-Q1

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Enable (EN Pin)
      2. 8.3.2  High Voltage VCC Regulator (PVCC, AVCC Pin)
      3. 8.3.3  Power-On Voltage Selection (VSET Pin)
      4. 8.3.4  Switching Frequency (RT Pin)
      5. 8.3.5  Clock Synchronization (SYNC Pin in SS Configuration)
      6. 8.3.6  Current Sense, Slope Compensation, and PWM (CS Pin)
      7. 8.3.7  Current Limit (CS Pin)
      8. 8.3.8  Feedback and Error Amplifier (COMP Pin)
      9. 8.3.9  Automatic Wake-Up and Standby
      10. 8.3.10 Boost Status Indicator (STATUS Pin)
      11. 8.3.11 Maximum Duty Cycle Limit, Minimum Input Supply Voltage
      12. 8.3.12 MOSFET Driver (LO Pin)
      13. 8.3.13 Thermal Shutdown
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown Mode
      2. 8.4.2 Standby Mode
      3. 8.4.3 Wake-Up Mode
        1. 8.4.3.1 Start-Stop Configuration (SS Configuration)
        2. 8.4.3.2 Emergency-Call Configuration (EC Configuration)
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Bypass Switch / Disconnection Switch Control
      2. 9.1.2 Loop Response
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1  Custom Design With WEBENCH® Tools
        2. 9.2.2.2  RSET Resistor
        3. 9.2.2.3  RT Resistor
        4. 9.2.2.4  Inductor Selection (LM)
        5. 9.2.2.5  Current Sense (RS)
        6. 9.2.2.6  Slope Compensation Ramp (RSL)
        7. 9.2.2.7  Output Capacitor (COUT)
        8. 9.2.2.8  Loop Compensation Component Selection and Maximum ESR
        9. 9.2.2.9  PVCC Capacitor, AVCC Capacitor, and AVCC Resistor
        10. 9.2.2.10 VOUT Filter (CVOUT, RVOUT)
        11. 9.2.2.11 Input Capacitor
        12. 9.2.2.12 MOSFET Selection
        13. 9.2.2.13 Diode Selection
        14. 9.2.2.14 Efficiency Estimation
      3. 9.2.3 Application Curves
    3. 9.3 System Examples
      1. 9.3.1 Lower Standby Threshold in SS Configuration
      2. 9.3.2 Dithering Using Dither Enabled Device
      3. 9.3.3 Clock Synchronization With LM5140
      4. 9.3.4 Dynamic Frequency Change
      5. 9.3.5 Dithering Using an External Clock
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
      2. 12.1.2 Development Support
        1. 12.1.2.1 Custom Design With WEBENCH® Tools
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 サポート・リソース
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • RUM|16
サーマルパッド・メカニカル・データ
発注情報

Inductor Selection (LM)

When selecting the inductor, consider three key parameters: inductor current ripple ratio (RR), falling slope of the inductor current, and RHP zero frequency (FRHP).

Inductor current ripple ratio is selected to have a balance between core loss and copper loss. The falling slope of the inductor current must be low enough to prevent subharmonic oscillation at high duty cycle (additional RSL resistor is required if not). Higher FRHP (= lower inductance) allows a higher crossover frequency and is always preferred when using a smaller value output capacitor.

The inductance value can be selected to set the inductor current ripple between 30% and 70% of the average inductor current as a good compromise between RR, FRHP, and inductor falling slope. In this example, 60% ripple ratio (RR = 0.6) is selected as the maximum inductor current ripple ratio (the inductor current ripple ratio is the biggest when D = 0.33). The target inductance value is calculated as follows:

Equation 20. GUID-7CEFCF82-D038-42FB-A9AD-3B8BB80D3E7E-low.gif
Equation 21. GUID-1D5F51B1-A7C1-441D-BE13-A4F19BF35581-low.gif

If the target inductance is smaller than the value calculated using Equation 21, consider adding the slope compensation resistor (RSL), as mentioned in Section 9.2.2.6, or select a smaller RR and recalculate the inductance using Equation 20.

A standard value of 1.5 µH is chosen for LM. The required inductor saturation current rating is estimated after selecting RS and RSL.