JAJSNZ8A February 2022 – April 2022 LM5152-Q1 , LM51521-Q1
PRODUCTION DATA
The device features a high voltage 5-V VCC regulator, which is sourced from the BIAS pin. The internal VCC regulator turns on 50 μs after the device is enabled and the 120-μs device configuration starts when VCC is above the VCC UVLO threshold (VVCC-UVLO). The device configuration is reset when the device shuts down or VCC falls down below 2.2 V. The preferred way to reconfigure the device is to shut down the device. During the configuration time, the light load switching mode is selected.
The high voltage VCC regulator allows the connection of the BIAS pin directly to supply voltages from 3.8 V to 42 V. When BIAS is less than the 5-V VCC regulation target (VVCC-REG), the VCC output tracks the BIAS pin voltage with a small dropout voltage, which is caused by the 1.7-Ω resistance of the VCC regulator.
The recommended VCC capacitor value is 4.7 μF. The VCC capacitor should be populated between VCC and PGND as close to the device as possible. The recommended BIAS capacitor value is 1.0 μF. The BIAS capacitor must be populated between BIAS and PGND close to the device.
The VCC regulator features a VCC current limit function that prevents device damage when the VCC pin is shorted to ground accidentally. The minimum sourcing capability of the VCC regulator is 100 mA (IVCC-CL) during either the device configuration time or active mode operation. The minimum sourcing capability of the VCC regulator is reduced to 1 mA during sleep mode or deep sleep mode, or when EN is less than VEN and VH is greater than VSYNC. The VCC regulator supplies the internal drivers and other internal circuits. The external MOSFETs must be carefully selected to make the driver current consumption less than IVCC-CL. The driver current consumption can be calculated in Equation 1.
where
If VIN operation below 3.8 V is required, the BIAS pin must be connected to the output of the boost converter (VLOAD). By connecting the BIAS pin to VLOAD, the boost converter input voltage (VSUPPLY) can drop down to 0.8 V if BIAS is greater than 3.8 V. See Section 9.3.16 for more detailed information about the minimum VSUPPLY.