JAJSJO6B December   2021  – October 2023 LM63460-Q1

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Revision History
  6. Device Comparison Table
  7. Pin Configuration and Functions
    1. 6.1 Wettable Flanks
    2. 6.2 Pinout Design for Clearance and FMEA
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Characteristics
    7. 7.7 Systems Characteristics
    8. 7.8 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Input Voltage Range (VIN1, VIN2)
      2. 8.3.2  Output Voltage Setpoint (FB)
      3. 8.3.3  Precision Enable and Input Voltage UVLO (EN/SYNC)
      4. 8.3.4  Frequency Synchronization (EN/SYNC)
      5. 8.3.5  Clock Locking
      6. 8.3.6  Adjustable Switching Frequency (RT)
      7. 8.3.7  Power-Good Monitor (PGOOD)
      8. 8.3.8  Bias Supply Regulator (VCC, BIAS)
      9. 8.3.9  Bootstrap Voltage and UVLO (CBOOT)
      10. 8.3.10 Spread Spectrum
      11. 8.3.11 Soft Start and Recovery From Dropout
      12. 8.3.12 Overcurrent and Short-Circuit Protection
      13. 8.3.13 Thermal Shutdown
      14. 8.3.14 Input Supply Current
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown Mode
      2. 8.4.2 Standby Mode
      3. 8.4.3 Active Mode
        1. 8.4.3.1 CCM Mode
        2. 8.4.3.2 AUTO Mode – Light-Load Operation
          1. 8.4.3.2.1 Diode Emulation
          2. 8.4.3.2.2 Frequency Foldback
        3. 8.4.3.3 FPWM Mode – Light-Load Operation
        4. 8.4.3.4 Minimum On-Time (High Input Voltage) Operation
        5. 8.4.3.5 Dropout
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Design 1 – Automotive Synchronous Buck Regulator at 2.1 MHz
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1  Custom Design With WEBENCH® Tools
          2. 9.2.1.2.2  Setting the Output Voltage
          3. 9.2.1.2.3  Choosing the Switching Frequency
          4. 9.2.1.2.4  Inductor Selection
          5. 9.2.1.2.5  Output Capacitor Selection
          6. 9.2.1.2.6  Input Capacitor Selection
          7. 9.2.1.2.7  Bootstrap Capacitor
          8. 9.2.1.2.8  VCC Capacitor
          9. 9.2.1.2.9  BIAS Power Connection
          10. 9.2.1.2.10 Feedforward Network
          11. 9.2.1.2.11 Input Voltage UVLO
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Design 2 – Automotive Synchronous Buck Regulator at 400 kHz
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
        1. 9.4.1.1 Thermal Design and Layout
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 サード・パーティ製品に関する免責事項
      2. 10.1.2 Development Support
        1. 10.1.2.1 Custom Design With WEBENCH® Tools
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 ドキュメントの更新通知を受け取る方法
    4. 10.4 サポート・リソース
    5. 10.5 Trademarks
    6. 10.6 静電気放電に関する注意事項
    7. 10.7 用語集
  12. 11Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

CCM Mode

The following operating description of the converter refers to the Functional Block Diagram and to the waveforms in Figure 8-12. In CCM, the converter supplies a regulated output voltage by turning on the internal high-side (HS) and low-side (LS) NMOS switches with varying duty cycle (D). During the HS switch on time, the SW voltage, VSW, swings up to approximately VIN, and the inductor current, iL, increases with a linear slope. The HS switch is turned off by the control logic. During the HS switch off time, tOFF, the LS switch is turned on. Inductor current discharges through the LS switch, which forces VSW to swing below ground by the voltage drop across the LS switch. The control loop adjusts the duty cycle to maintain a constant output voltage. D is defined by the on time of the HS switch over the switching period:

Equation 5. D = tON / tSW

In an ideal buck converter where losses are ignored, D is proportional to the output voltage and inversely proportional to the input voltage:

Equation 6. D = VOUT / VIN
GUID-20210607-CA0I-C25F-SNCJ-XHJGT35ZSGNK-low.svg Figure 8-12 SW Voltage and Inductor Current Waveforms in Continuous Conduction Mode (CCM)