JAJSOR9 September   2024 LM70660 , LM706A0

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Input Voltage Range (VIN)
      2. 6.3.2  High-Voltage Bias Supply Regulator (VCC, BIAS, VDDA)
      3. 6.3.3  Enable (EN)
      4. 6.3.4  Power-Good Monitor (PG)
      5. 6.3.5  Switching Frequency (RT)
      6. 6.3.6  Dual Random Spread Spectrum (DRSS)
      7. 6.3.7  Soft Start
      8. 6.3.8  Output Voltage Setpoint (FB)
      9. 6.3.9  Minimum Controllable On-Time
      10. 6.3.10 Error Amplifier and PWM Comparator (FB, EXTCOMP)
      11. 6.3.11 Slope Compensation
      12. 6.3.12 Shunt Current Sensing
      13. 6.3.13 Hiccup Mode Current Limiting
      14. 6.3.14 Device Configuration (CONFIG)
      15. 6.3.15 Single-Output Dual-Phase Operation
      16. 6.3.16 Pulse Frequency Modulation (PFM) / Synchronization
      17. 6.3.17 Thermal Shutdown (TSD)
    4. 6.4 Device Functional Modes
      1. 6.4.1 Shutdown Mode
      2. 6.4.2 Standby Mode
      3. 6.4.3 Active Mode
      4. 6.4.4 Sleep Mode
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Power Train Components
        1. 7.1.1.1 Buck Inductor
        2. 7.1.1.2 Output Capacitors
        3. 7.1.1.3 Input Capacitors
        4. 7.1.1.4 EMI Filter
      2. 7.1.2 Error Amplifier and Compensation
      3. 7.1.3 Maximum Ambient Temperature
        1. 7.1.3.1 Derating Curves
    2. 7.2 Typical Applications
      1. 7.2.1 Design 1 – High Efficiency, Wide Input, 400kHz Synchronous Buck Regulator
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
          1. 7.2.1.2.1 Custom Design With WEBENCH® Tools
          2. 7.2.1.2.2 Custom Design With Excel Quickstart Tool
          3. 7.2.1.2.3 Buck Inductor
          4. 7.2.1.2.4 Current-Sense Resistance
          5. 7.2.1.2.5 Output Capacitors
          6. 7.2.1.2.6 Input Capacitors
          7. 7.2.1.2.7 Frequency Set Resistor
          8. 7.2.1.2.8 Feedback Resistors
          9. 7.2.1.2.9 Compensation Components
        3. 7.2.1.3 Application Curves
      2. 7.2.2 Design 2 – High Efficiency 24V to 3.3V 400kHz Synchronous Buck Regulator
        1. 7.2.2.1 Design Requirements
        2. 7.2.2.2 Detailed Design Procedure
        3. 7.2.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
        1. 7.4.1.1 Thermal Design and Layout
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
        1. 8.1.1.1 Custom Design With WEBENCH® Tools
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
        1. 8.2.1.1 PCB Layout Resources
        2. 8.2.1.2 Thermal Design Resources
    3. 8.3 ドキュメントの更新通知を受け取る方法
    4. 8.4 サポート・リソース
    5. 8.5 Trademarks
    6. 8.6 静電気放電に関する注意事項
    7. 8.7 用語集
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information
    1. 10.1 Tape and Reel Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報
Current-Sense Resistance
  1. Calculate the current-sense resistance based on a maximum peak current capability of at least 25% higher than the peak inductor current at full load to provide sufficient margin during start-up and load-on transients. Calculate the current sense resistances using Equation 33.
    Equation 33. R S = V C S ( T H ) 1.25 × I L O P K   = 56 m V 1.25 × 9 . 74   =   4.6 m Ω

    where

    • VCS(TH) is the 56mV current limit threshold.
  2. Select a standard resistance value of 5mΩ for the shunt. A 0508 footprint component with wide aspect ratio termination design provides 1-W power rating, low parasitic series inductance, and compact PCB layout. Carefully observe the Layout Guidelines to make sure that noise and DC errors do not corrupt the differential current-sense voltages measured at the ISNS+ and VOUT pins.
  3. Place the shunt resistor close to the inductor.
  4. Use Kelvin-sense connections, and route the sense lines differentially from the shunt to the LM706x0.
  5. The ISNS-to-output propagation delay (related to the current limit comparator, internal logic and power MOSFET gate drivers) causes the peak current to increase above the calculated current limit threshold. For a total propagation delay tISNS(delay) of 40ns, use Equation 34 to calculate the worst-case peak inductor current with the output shorted.
    Equation 34. I L O P K S C   =   V C S ( T H ) R S + V I N ( m a x ) × t I S N S ( d e l a y ) L O   = 56 m V 5 m Ω + 60 V × 45 n s 3.3 µ H = 11 . 9 A    
  6. Based on this result, select an inductor with saturation current greater than 12A across the full operating temperature range.