JAJSOR9 September   2024 LM70660 , LM706A0

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Input Voltage Range (VIN)
      2. 6.3.2  High-Voltage Bias Supply Regulator (VCC, BIAS, VDDA)
      3. 6.3.3  Enable (EN)
      4. 6.3.4  Power-Good Monitor (PG)
      5. 6.3.5  Switching Frequency (RT)
      6. 6.3.6  Dual Random Spread Spectrum (DRSS)
      7. 6.3.7  Soft Start
      8. 6.3.8  Output Voltage Setpoint (FB)
      9. 6.3.9  Minimum Controllable On-Time
      10. 6.3.10 Error Amplifier and PWM Comparator (FB, EXTCOMP)
      11. 6.3.11 Slope Compensation
      12. 6.3.12 Shunt Current Sensing
      13. 6.3.13 Hiccup Mode Current Limiting
      14. 6.3.14 Device Configuration (CONFIG)
      15. 6.3.15 Single-Output Dual-Phase Operation
      16. 6.3.16 Pulse Frequency Modulation (PFM) / Synchronization
      17. 6.3.17 Thermal Shutdown (TSD)
    4. 6.4 Device Functional Modes
      1. 6.4.1 Shutdown Mode
      2. 6.4.2 Standby Mode
      3. 6.4.3 Active Mode
      4. 6.4.4 Sleep Mode
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Power Train Components
        1. 7.1.1.1 Buck Inductor
        2. 7.1.1.2 Output Capacitors
        3. 7.1.1.3 Input Capacitors
        4. 7.1.1.4 EMI Filter
      2. 7.1.2 Error Amplifier and Compensation
      3. 7.1.3 Maximum Ambient Temperature
        1. 7.1.3.1 Derating Curves
    2. 7.2 Typical Applications
      1. 7.2.1 Design 1 – High Efficiency, Wide Input, 400kHz Synchronous Buck Regulator
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
          1. 7.2.1.2.1 Custom Design With WEBENCH® Tools
          2. 7.2.1.2.2 Custom Design With Excel Quickstart Tool
          3. 7.2.1.2.3 Buck Inductor
          4. 7.2.1.2.4 Current-Sense Resistance
          5. 7.2.1.2.5 Output Capacitors
          6. 7.2.1.2.6 Input Capacitors
          7. 7.2.1.2.7 Frequency Set Resistor
          8. 7.2.1.2.8 Feedback Resistors
          9. 7.2.1.2.9 Compensation Components
        3. 7.2.1.3 Application Curves
      2. 7.2.2 Design 2 – High Efficiency 24V to 3.3V 400kHz Synchronous Buck Regulator
        1. 7.2.2.1 Design Requirements
        2. 7.2.2.2 Detailed Design Procedure
        3. 7.2.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
        1. 7.4.1.1 Thermal Design and Layout
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
        1. 8.1.1.1 Custom Design With WEBENCH® Tools
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
        1. 8.2.1.1 PCB Layout Resources
        2. 8.2.1.2 Thermal Design Resources
    3. 8.3 ドキュメントの更新通知を受け取る方法
    4. 8.4 サポート・リソース
    5. 8.5 Trademarks
    6. 8.6 静電気放電に関する注意事項
    7. 8.7 用語集
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information
    1. 10.1 Tape and Reel Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Derating Curves

The data in this section was taken on the LM706A0QEVM evaluation board with a device and PCB combination, giving an RθJA of about 19°C/W. Note that the data given in these graphs are for illustration purposes only and the actual performance in any given application depends on all of the previously mentioned factors.

LM70660 LM706A0 Maximum Output Current versus Ambient Temperature
VIN = 48V FSW = 400kHz
VOUT = 3.3V RθJA = 18.6°C/W
Figure 7-4 Maximum Output Current versus Ambient Temperature
LM70660 LM706A0 Maximum Output Current versus Ambient Temperature
VIN = 12V FSW = 400kHz
VOUT = 3.3V RθJA = 18.6°C/W
Figure 7-6 Maximum Output Current versus Ambient Temperature
LM70660 LM706A0 Maximum Output Current versus Ambient Temperature
VIN = 48V FSW = 400kHz
VOUT = 5V RθJA = 18.6°C/W
Figure 7-8 Maximum Output Current versus Ambient Temperature
LM70660 LM706A0 Maximum Output Current versus Ambient
                        Temperature
VIN = 12V FSW = 400kHz
VOUT = 5V RθJA = 18.6°C/W
Figure 7-10 Maximum Output Current versus Ambient Temperature
LM70660 LM706A0 Maximum Output Current versus Ambient Temperature
VIN = 24V FSW = 400kHz
VOUT = 3.3V RθJA = 18.6°C/W
Figure 7-5 Maximum Output Current versus Ambient Temperature
LM70660 LM706A0 Maximum Output Current versus Ambient Temperature
VIN = 12V FSW = 2.1MHz
VOUT = 3.3V RθJA = 18.6°C/W
Figure 7-7 Maximum Output Current versus Ambient Temperature
LM70660 LM706A0 Maximum Output Current versus Ambient Temperature
VIN = 24V FSW = 400kHz
VOUT = 5V RθJA = 18.6°C/W
Figure 7-9 Maximum Output Current versus Ambient Temperature
LM70660 LM706A0 Maximum Output Current versus Ambient
                        Temperature
VIN = 12V FSW = 2.1MHz
VOUT = 5V RθJA = 18.6°C/W
Figure 7-11 Maximum Output Current versus Ambient Temperature