JAJSJX9A September   2023  – June 2024 LM70840-Q1 , LM70860-Q1 , LM70880-Q1

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. 概要 (続き)
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Input Voltage Range (VIN)
      2. 7.3.2  High-Voltage Bias Supply Regulator (VCC, BIAS, VDDA)
      3. 7.3.3  Enable (EN)
      4. 7.3.4  Power-Good Monitor (PG)
      5. 7.3.5  Switching Frequency (RT)
      6. 7.3.6  Dual Random Spread Spectrum (DRSS)
      7. 7.3.7  Soft Start
      8. 7.3.8  Output Voltage Setpoint (FB)
      9. 7.3.9  Minimum Controllable On-Time
      10. 7.3.10 Error Amplifier and PWM Comparator (FB, EXTCOMP)
      11. 7.3.11 Slope Compensation
      12. 7.3.12 Shunt Current Sensing
      13. 7.3.13 Hiccup Mode Current Limiting
      14. 7.3.14 Device Configuration (CONFIG)
      15. 7.3.15 Single-Output Dual-phase Operation
      16. 7.3.16 Pulse Frequency Modulation (PFM) / Synchronization
      17. 7.3.17 Thermal Shutdown (TSD)
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Standby Mode
      3. 7.4.3 Active Mode
      4. 7.4.4 Sleep Mode
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Power Train Components
        1. 8.1.1.1 Buck Inductor
        2. 8.1.1.2 Output Capacitors
        3. 8.1.1.3 Input Capacitors
        4. 8.1.1.4 EMI Filter
      2. 8.1.2 Error Amplifier and Compensation
      3. 8.1.3 Maximum Ambient Temperature
        1. 8.1.3.1 Derating Curves
    2. 8.2 Typical Applications
      1. 8.2.1 Design 1 – High Efficiency, Wide Input, 400-kHz Synchronous Buck Regulator
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Custom Design With WEBENCH® Tools
          2. 8.2.1.2.2 Custom Design With Excel Quickstart Tool
          3. 8.2.1.2.3 Buck Inductor
          4. 8.2.1.2.4 Current-Sense Resistance
          5. 8.2.1.2.5 Output Capacitors
          6. 8.2.1.2.6 Input Capacitors
          7. 8.2.1.2.7 Frequency Set Resistor
          8. 8.2.1.2.8 Feedback Resistors
          9. 8.2.1.2.9 Compensation Components
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Design 2 – High Efficiency 48V to 12V 400kHz Synchronous Buck Regulator
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Thermal Design and Layout
      3. 8.4.3 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
        1. 9.1.1.1 Custom Design With WEBENCH® Tools
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
        1. 9.2.1.1 PCB Layout Resources
        2. 9.2.1.2 Thermal Design Resources
    3. 9.3 ドキュメントの更新通知を受け取る方法
    4. 9.4 サポート・リソース
    5. 9.5 Trademarks
    6. 9.6 静電気放電に関する注意事項
    7. 9.7 用語集
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • RRX|29
サーマルパッド・メカニカル・データ

Buck Inductor

For most applications, choose a buck inductance such that the inductor ripple current, ΔIL, is between 30% to 50% of the maximum DC output current at nominal input voltage. Choose the inductance using Equation 11 based on a peak inductor current given by Equation 12.

Equation 11. L O   =   V O U T Δ I L × F S W × 1 - V O U T V I N
Equation 12. I L P K   =   I O U T + I L 2

Check the inductor data sheet to make sure that the saturation current of the inductor is well above the peak inductor current of a particular design. Ferrite designs have very low core loss and are preferred at high switching frequencies, so design goals can then concentrate on copper loss and preventing saturation. Low inductor core loss is evidenced by reduced no-load input current and higher light-load efficiency. However, ferrite core materials exhibit a hard saturation characteristic and the inductance collapses abruptly when the saturation current is exceeded. This results in an abrupt increase in inductor ripple current, higher output voltage ripple, not to mention reduced efficiency and compromised reliability. Note that the saturation current of an inductor generally decreases as the core temperature increases. Of course, accurate overcurrent protection is key to avoiding inductor saturation.