JAJSLG4 december   2022 LM7480

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Revision History
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Switching Characteristics
    7. 7.7 Typical Characteristics
  9. Parameter Measurement Information
  10. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Charge Pump
      2. 9.3.2 Dual Gate Control (DGATE, HGATE)
        1. 9.3.2.1 Reverse Battery Protection (A, C, DGATE)
        2. 9.3.2.2 Load Disconnect Switch Control (HGATE, OUT)
      3. 9.3.3 Overvoltage Protection and Battery Voltage Sensing (VSNS, SW, OV)
      4. 9.3.4 Low Iq Shutdown and Under Voltage Lockout (EN/UVLO)
    4. 9.4 Device Functional Modes
    5. 9.5 Application Examples
      1. 9.5.1 Redundant Supply OR-ing with Inrush Current Limiting, Overvoltage Protection and ON/OFF Control
      2. 9.5.2 Ideal Diode With Unsuppressed Load Dump Protection
  11. 10Applications and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical 12-V Reverse Battery Protection Application
      1. 10.2.1 Design Requirements for 12-V Battery Protection
      2. 10.2.2 Automotive Reverse Battery Protection
      3. 10.2.3 Detailed Design Procedure
        1. 10.2.3.1 Design Considerations
        2. 10.2.3.2 Charge Pump Capacitance VCAP
        3. 10.2.3.3 Input and Output Capacitance
        4. 10.2.3.4 Hold-Up Capacitance
        5. 10.2.3.5 Overvoltage Protection and Battery Monitor
      4. 10.2.4 MOSFET Selection: Blocking MOSFET Q1
      5. 10.2.5 MOSFET Selection: Hot-Swap MOSFET Q2
      6. 10.2.6 TVS Selection
      7. 10.2.7 Application Curves
    3. 10.3 200-V Unsuppressed Load Dump Protection Application
      1. 10.3.1 Design Requirements for 200-V Unsuppressed Load Dump Protection
      2. 10.3.2 Design Procedure
        1. 10.3.2.1 Boost Converter Components (C2, C3, L1)
        2. 10.3.2.2 Input and Output Capacitance
        3. 10.3.2.3 VS Capacitance, Resistor, and Zener Clamp
        4. 10.3.2.4 Overvoltage Protection and Output Clamp
        5. 10.3.2.5 MOSFET Q1 Selection
        6. 10.3.2.6 Input TVS Selection
        7. 10.3.2.7 MOSFET Q2 Selection
      3. 10.3.3 Application Curves
    4. 10.4 Do's and Don'ts
    5. 10.5 Power Supply Recommendations
      1. 10.5.1 Transient Protection
      2. 10.5.2 TVS Selection for 12-V Battery Systems
      3. 10.5.3 TVS Selection for 24-V Battery Systems
    6. 10.6 Layout
      1. 10.6.1 Layout Guidelines
      2. 10.6.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 ドキュメントの更新通知を受け取る方法
    2. 11.2 サポート・リソース
    3. 11.3 Trademarks
    4. 11.4 静電気放電に関する注意事項
    5. 11.5 用語集
  13. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Overvoltage Protection and Battery Monitor

Resistors R1, R2 and R3 connected in series are used to program the overvoltage threshold and battery monitor ratio. The resistor values required for setting the overvoltage threshold VOV to 37.0 V and battery monitor ratio VBATT_MON : VBATT to 1:8 are calculated by solving Equation 3 and Equation 4.

Equation 4. GUID-2DB67FC8-4826-4A2D-9513-37A05A1D0916-low.png
Equation 5. GUID-807CD33F-375D-45CA-A6FD-928C08BF01C1-low.png

For minimizing the input current drawn from the battery through resistors R1, R2 and R3, it recommended to use higher value of resistance. Using high value resistors will add error in the calculations because the current through the resistors at higher value will become comparable to the leakage current into the OV pin. Maximum leakage current into the OV pin is 1 µA and choosing (R1 + R2 + R3) < 120 kΩ ensures current through resistors is 100 times greater than leakage through OV pin.

Based on the device electrical characteristics, VOVR is 1.23 V and battery monitor ratio (VBATT_MON / VBATT) is designed for a ratio of 1/8. To limit (R1 + R2 + R3) < 120 kΩ, select (R1 + R2) = 100 kΩ. Solving Equation 3 gives R3 = 3.45 kΩ. Solving Equation 4 for R2 using (R1 + R2) = 100 kΩ and R3 = 3.45 kΩ, gives R2 = 9.48 kΩ and R1 = 90.52 kΩ.

Standard 1% resistor values closest to the calculated resistor values are R1 = 90.9 kΩ, R2 = 9.09 kΩ and R3 = 3.48 kΩ.