JAJSLG5 december   2022 LM7481

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Charge Pump
      2. 8.3.2 Dual Gate Control (DGATE, HGATE)
        1. 8.3.2.1 Reverse Battery Protection (A, C, DGATE)
        2. 8.3.2.2 Load Disconnect Switch Control (HGATE, OUT)
      3. 8.3.3 Overvoltage Protection and Battery Voltage sensing (VSNS, SW, OV)
      4. 8.3.4 Low Iq Shutdown and Undervoltage Lockout (EN/UVLO)
    4. 8.4 Device Functional Modes
    5. 8.5 Application Examples
      1. 8.5.1 Redundant Supply OR-ing With Inrush Current Limiting, Overvoltage Protection and ON/OFF Control
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical 12-V Reverse Battery Protection Application
      1. 9.2.1 Design Requirements for 12-V Battery Protection
      2. 9.2.2 Automotive Reverse Battery Protection
      3. 9.2.3 Detailed Design Procedure
        1. 9.2.3.1 Design Considerations
        2. 9.2.3.2 Charge Pump Capacitance VCAP
        3. 9.2.3.3 Input and Output Capacitance
        4. 9.2.3.4 Hold-up Capacitance
        5. 9.2.3.5 Overvoltage Protection and Battery Monitor
      4. 9.2.4 MOSFET Selection: Blocking MOSFET Q1
      5. 9.2.5 MOSFET Selection: Hot-Swap MOSFET Q2
      6. 9.2.6 TVS selection
      7. 9.2.7 Application Curves
    3. 9.3 Do's and Don'ts
    4. 9.4 Power Supply Recommendations
      1. 9.4.1 Transient Protection
      2. 9.4.2 TVS Selection for 12-V Battery Systems
      3. 9.4.3 TVS Selection for 24-V Battery Systems
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
      2. 9.5.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 ドキュメントの更新通知を受け取る方法
    2. 10.2 サポート・リソース
    3. 10.3 Trademarks
    4. 10.4 静電気放電に関する注意事項
    5. 10.5 用語集
  12. 11Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

TVS Selection for 24-V Battery Systems

For 24-V battery protection application, the TVS and MOSFET Q1 and Q2 needs to be changed to suit 24-V battery requirements.

The breakdown voltage of the TVS+ should be higher than 48-V jump start voltage, less than the absolute maximum ratings of anode and enable pin of LM74810 (70 V) and should withstand 65-V suppressed load dump. The breakdown voltage of TVS- should be lower than maximum reverse battery voltage –32 V, so that the TVS- is not damaged due to long time exposure to reverse connected battery.

During ISO 7637-2 pulse 1, the input voltage goes up to –600 V with a generator impedance of 50 Ω. This translates to 12-A flowing through the TVS-. The clamping voltage of the TVS- cannot be same as that of 12-V battery protection circuit because during the ISO 7637-2 pulse, the Anode to Cathode voltage seen is equal to (- TVS Clamping voltage + Output capacitor voltage). For 24-V battery application, the maximum battery voltage is 32 V, then the clamping voltage of the TVS- should not exceed, 85 V – 32 V = 53 V.

Single bi-directional TVS cannot be used for 24-V battery protection because breakdown voltage for TVS+ ≥ 65V, maximum clamping voltage is ≤ 53 V and the clamping voltage cannot be less than the breakdown voltage. Two un-directional TVS connected back-back needs to be used at the input. For positive side TVS+, SMBJ58A with the breakdown voltage of 64.4 V (minimum), 67.8 (typical) is recommended. For the negative side TVS-, SMBJ28A with breakdown voltage close to 32 V (to withstand maximum reverse battery voltage –32 V) and maximum clamping voltage of 42.1 V is recommended.

For 24-V battery protection, a 75-V rated MOSFET is recommended to be used along with SMBJ28A and SMBJ58A connected back-back at the input.