JAJSOX6 October   2023 LM74930-Q1

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Charge Pump
      2. 7.3.2  Dual Gate Control (DGATE, HGATE)
        1. 7.3.2.1 Load Disconnect Switch Control (HGATE, OUT)
        2. 7.3.2.2 Reverse Battery Protection (A, C, DGATE)
      3. 7.3.3  Overcurrent Protection (CS+, CS-, ILIM, IMON, TMR)
      4. 7.3.4  Overcurrent Protection with Circuit Breaker (ILIM, TMR)
      5. 7.3.5  Overcurrent Protection With Latch-Off
      6. 7.3.6  Short-Circuit Protection (ISCP)
        1. 7.3.6.1 Device Wake-Up With Output Short-Circuit Condition
      7. 7.3.7  Analog Current Monitor Output (IMON)
      8. 7.3.8  Overvoltage and Undervoltage Protection (OV, UVLO, OVCLAMP)
      9. 7.3.9  Disabling Reverse Current Blocking Functionality (MODE)
      10. 7.3.10 Device Functional Modes
        1. 7.3.10.1 Low Quiescent Current Shutdown Mode (EN)
  9. Applications and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application: 200-V Unsuppressed Load Dump Protection Application
      1. 8.2.1 Design Requirements for 200-V Unsuppressed Load Dump Protection
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  VS Capacitance, Resistor R1 and Zener Clamp (DZ)
        2. 8.2.2.2  Charge Pump Capacitance VCAP
        3. 8.2.2.3  Input and Output Capacitance
        4. 8.2.2.4  Overvoltage and Undervoltage Protection Component Selection
        5. 8.2.2.5  Selection of Scaling Resistor (RSET) and Short-Circuit Protection Setting Resistor (RSCP)
        6. 8.2.2.6  Overcurrent Limit (ILIM), Circuit Breaker Timer (TMR), and Current Monitoring Output (IMON) Selection
        7. 8.2.2.7  Selection of Current Sense Resistor, RSNS
        8. 8.2.2.8  Hold-Up Capacitance
        9. 8.2.2.9  MOSFET Q1 Selection
        10. 8.2.2.10 MOSFET Q2 Selection
        11. 8.2.2.11 Input TVS Selection
      3. 8.2.3 Application Curves
    3. 8.3 Best Design Practices
    4. 8.4 Power Supply Recommendations
      1. 8.4.1 Transient Protection
      2. 8.4.2 TVS Selection for 12-V Battery Systems
      3. 8.4.3 TVS Selection for 24-V Battery Systems
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 ドキュメントの更新通知を受け取る方法
    2. 9.2 サポート・リソース
    3. 9.3 Trademarks
    4. 9.4 静電気放電に関する注意事項
    5. 9.5 用語集
  11. 10Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Overvoltage and Undervoltage Protection Component Selection

Resistors R1, R2 and R3, R4 connected from SW pin to ground is used to program the undervoltage and overvoltage threshold. The resistor values required for setting the undervoltage threshold (VUVLO to 5.5 V) and overvoltage threshold (VOV to 37.0 V) a are calculated by solving

Equation 12. VUVLOF=VUVSET×R2 R1+R2
Equation 13. VOVR=VOVSET×R4 R3+R4

For minimizing the input current drawn from the battery through resistors R1, R2, and R3, R4; TI recommends to use higher value of resistance. Using high value resistors adds error in the calculations because the current through the resistors at higher value becomes comparable to the leakage current into the OV pin. Maximum leakage current into the UVLO and OV pin is 0.2 µA and choosing total ladder resistor in 100kΩ range ensures current through resistors is much higher than leakage through the OV pin.

Based on the device electrical characteristics, VUVLOF is 0.55 V. Select R1 = 100 kΩ. Solving Equation 12 gives R2 = 11.5 kΩ. Solving Equation 13 with R3 selected as 100 kΩ and VOVR = 0.6 V gives R4 = 1.65 kΩ as standard 1% resistor values closest to the calculated resistor values.

An optional capacitor CUV can be placed in parallel with R2 on UVLO resistor ladder to filter out any fast undervoltage transients on battery lines to avoid false UVLO trigger.