SLOS481B July   2010  – October 2014 LM833

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Typical Design Example Audio Pre-Amplifier
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 Handling Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Operating Characteristics
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Operating Voltage
      2. 8.3.2 High Gain Bandwidth Product
      3. 8.3.3 Low Total Harmonic Distortion
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Introduction to Design Method
        2. 9.2.2.2 RIAA Phono Preamplifier Design Procedure
      3. 9.2.3 Application Curves for Output Characteristics
    3. 9.3 Typical Application — Reducing Oscillation from High-Capacitive Loads
      1. 9.3.1 Test Schematic
      2. 9.3.2 Output Characteristics
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Trademarks
    2. 12.2 Electrostatic Discharge Caution
    3. 12.3 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VCC+ Supply voltage(2) 18 V
VCC– Supply voltage(2) –18 V
VCC+ – VCC– Supply voltage 36 V
Input voltage, either input(2)(3) VCC– VCC+ V
Input current(4) ±10 mA
Duration of output short circuit(5) Unlimited
TJ Operating virtual junction temperature 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC–.
(3) The magnitude of the input voltage must never exceed the magnitude of the supply voltage.
(4) Excessive input current will flow if a differential input voltage in excess of approximately 0.6 V is applied between the inputs, unless some limiting resistance is used.
(5) The output may be shorted to ground or either power supply. Temperature and/or supply voltages must be limited to ensure the maximum dissipation rating is not exceeded.

7.2 Handling Ratings

PARAMETER DEFINITION MIN MAX UNIT
Tstg Storage temperature range –65 150 °C
V(ESD) Human-Body Model (HBM)(1) 0 2.5 kV
Charged-Device Model (CDM)(2) 0 1.5
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

MIN MAX UNIT
VCC– Supply voltage –5 –18 V
VCC+ 5 18
TA Operating free-air temperature range –40 85 °C

7.4 Thermal Information

THERMAL METRIC(1) LM833 UNIT
D DGK P
8 PINS
JA Junction-to-ambient thermal resistance(2)(3) 97 172 85 °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).
(2) Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TA) / θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.
(3) The package thermal impedance is calculated in accordance with JESD 51-7.

7.5 Electrical Characteristics

VCC– = –15 V, VCC+ = 15 V, TA = 25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIO Input offset voltage VO  = 0, RS  = 10 Ω, VCM  = 0 TA = 25°C 0.15 2 mV
TA = –40°C to 85°C 3
αVIO Input offset voltage temperature coefficient VO  = 0, RS  = 10 Ω, VCM  = 0 TA = –40°C to 85°C 2 μV/°C
IIB Input bias current VO  = 0, VCM  = 0 TA = 25°C 300 750 nA
TA = –40°C to 85°C 800
IIO Input offset current VO  = 0, VCM  = 0 TA = 25°C 25 150 nA
TA = –40°C to 85°C 175
VICR Common-mode input voltage range ΔVIO  = 5 mV, VO  = 0 ±13 ±14 V
AVD Large-signal differential voltage amplification RL  ≥ 2 kΩ, VO  = ±10 V TA = 25°C 90 110 dB
TA = –40°C to 85°C 85
VOM Maximum output voltage swing VID  = ±1 V RL = 600 Ω VOM+ 10.7 V
VOM– –11.9
RL = 2000 Ω VOM+ 13.2 13.8
VOM– –13.2 –13.7
RL = 10,000 Ω VOM+ 13.5 14.1
VOM– –14 –14.6
CMMR Common-mode rejection ratio VIN  = ±13 V 80 100 dB
kSVR(1) Supply-voltage rejection ratio VCC+ = 5 V to 15 V, VCC– = –5 V to –15 V 80 105 dB
IOS Output short-circuit current |VID| = 1 V, Output to GND Source current 15 29 mA
Sink current –20 –37
ICC Supply current (per channel) VO  = 0 TA = 25°C 2.05 2.5 mA
TA = –40°C to 85°C 2.75
(1) Measured with VCC± differentially varied at the same time

7.6 Operating Characteristics

VCC– = –15 V, VCC+ = 15 V, TA = 25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SR Slew rate at unity gain AVD = 1, VIN = –10 V to 10 V, RL = 2 kΩ, CL = 100 pF 5 7 V/μs
GBW Gain bandwidth product f = 100 kHz 10 16 MHz
B1 Unity gain frequency Open loop 9 MHz
Gm Gain margin RL = 2 kΩ CL = 0 pF –11 dB
CL = 100 pF –6
Φm Phase margin RL = 2 kΩ CL = 0 pF 55 degrees
CL = 100 pF 40
Amp-to-amp isolation f = 20 Hz to 20 kHz –120 dB
Power bandwidth VO = 27 V(PP), RL = 2 kΩ, THD ≤ 1% 120 kHz
THD Total harmonic distortion VO = 3 Vrms, AVD = 1, RL = 2 kΩ, f = 20 Hz to 20 kHz 0.002%
zo Open-loop output impedance VO = 0, f = 9 MHz 37 Ω
rid Differential input resistance VCM = 0 175
Cid Differential input capacitance VCM = 0 12 pF
Vn Equivalent input noise voltage f = 1 kHz, RS = 100 Ω 4.5 nV/√Hz
In Equivalent input noise current f = 1 kHz 0.5 pA/√Hz

7.7 Typical Characteristics

voltage_noise_test_cx_los481.gifFigure 1. Voltage Noise Test Circuit (0.1 Hz to 10 Hz)
g_iib_vcm.gif
Figure 2. Input Bias Current vs Common-Mode Voltage
g_iib_ta.gif
Figure 4. Input Bias Current vs Temperature
g_cmv_neg_ta.gif
Figure 6. Input Common-Mode Voltage Low Proximity
to VCC– vs Temperature
g_osvp_vccpos.gif
Figure 8. Output Saturation Voltage Proximity to VCC+
vs Load Resistance
g_ios_ta.gif
Figure 10. Output Short-Circuit Current vs Temperature
g_cmrr_f.gif
Figure 12. CMRR vs Frequency
g_gbw_vcc.gif
Figure 14. Gain Bandwidth Product vs Supply Voltage
g_vo_vcc.gif
Figure 16. Output Voltage vs Supply Voltage
g_av_vcc.gif
Figure 18. Open-Loop Gain vs Supply Voltage
g_zo_f.gif
Figure 20. Output Impedance vs Frequency
g_thd_f.gif
Figure 22. Total Harmonic Distortion vs Frequency
g_sr_vcc.gif
Figure 24. Slew Rate vs Supply Voltage
g_gn_ph_f.gif
Figure 26. Gain and Phase vs Frequency
g_over_cout.gif
Figure 28. Overshoot vs Output Load Capacitance
g_v_noise_rs.gif
Figure 30. Input Referred Noise Voltage
vs Source Resistance
g_vo_vi_t_avpos.gif
Figure 32. Large Signal Transient Response (AV = 1)
g_sm_signal.gif
Figure 34. Small Signal Transient Response
g_iib_vcc.gif
Figure 3. Input Bias Current vs Supply Voltage
g_vio_ta.gif
Figure 5. Input Offset Voltage vs Temperature
g_cmv_pos_ta.gif
Figure 7. Input Common-Mode Voltage High Proximity
to VCC+ vs Temperature
g_osvp_vccneg.gif
Figure 9. Output Saturation Voltage Proximity to VCC–
vs Load Resistance
g_icc_ta.gif
Figure 11. Supply Current vs Temperature
g_psrr_f.gif
Figure 13. PSSR vs Frequency
g_gbw_ta.gif
Figure 15. Gain Bandwidth Product vs Temperature
g_vo_f.gif
Figure 17. Output Voltage vs Frequency
g_av_ta.gif
Figure 19. Open-Loop Gain vs Temperature
g_ctr_f.gif
Figure 21. Crosstalk Rejection vs Frequency
g_thd_vo.gif
Figure 23. Total Harmonic Distortion vs Output Voltage
g_sr_ta.gif
Figure 25. Slew Rate vs Temperature
g_gn_ph_cout.gif
Figure 27. Gain and Phase Margin
vs Output Load Capacitance
g_noise_f.gif
Figure 29. Input Voltage and Current Noise vs Frequency
g_gn_ph_rsd.gif
Figure 31. Gain and Phase Margin
vs Differential Source Resistance
g_vo_vi_t_avneg.gif
Figure 33. Large Signal Transient Response (AV = –1)
g_low_f_noise.gif
Figure 35. Low-Frequency Noise