SNOSDA7F September   2020  – August 2024 LMG3422R030 , LMG3426R030 , LMG3427R030

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Switching Characteristics
    7. 5.7 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1 Switching Parameters
      1. 6.1.1 Turn-On Times
      2. 6.1.2 Turn-Off Times
      3. 6.1.3 Drain-Source Turn-On Slew Rate
      4. 6.1.4 Turn-On and Turn-Off Switching Energy
      5. 6.1.5 Zero-Voltage Detection Times (LMG3426R030 only)
      6. 6.1.6 Zero-Current Detection Times (LMG3427R030 only)
    2. 6.2 Safe Operation Area (SOA)
      1. 6.2.1 Repetitive SOA
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
      1. 7.2.1 LMG3422R030 Functional Block Diagram
      2. 7.2.2 LMG3426R030 Functional Block Diagram
      3. 7.2.3 LMG3427R030 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  GaN FET Operation Definitions
      2. 7.3.2  Direct-Drive GaN Architecture
      3. 7.3.3  Drain-Source Voltage Capability
      4. 7.3.4  Internal Buck-Boost DC-DC Converter
      5. 7.3.5  VDD Bias Supply
      6. 7.3.6  Auxiliary LDO
      7. 7.3.7  Fault Protection
        1. 7.3.7.1 Overcurrent Protection and Short-Circuit Protection
        2. 7.3.7.2 Overtemperature Shutdown Protection
        3. 7.3.7.3 UVLO Protection
        4. 7.3.7.4 High-Impedance RDRV Pin Protection
        5. 7.3.7.5 Fault Reporting
      8. 7.3.8  Drive-Strength Adjustment
      9. 7.3.9  Temperature-Sensing Output
      10. 7.3.10 Ideal-Diode Mode Operation
        1. 7.3.10.1 Overtemperature-Shutdown Ideal-Diode Mode
      11. 7.3.11 Zero-Voltage Detection (ZVD) (LMG3426R030 only)
      12. 7.3.12 Zero-Current Detection (ZCD) (LMG3427R030 only)
    4. 7.4 Start-Up Sequence
    5. 7.5 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Slew Rate Selection
        2. 8.2.2.2 Signal Level-Shifting
        3. 8.2.2.3 Buck-Boost Converter Design
      3. 8.2.3 Application Curves
    3. 8.3 Do's and Don'ts
    4. 8.4 Power Supply Recommendations
      1. 8.4.1 Using an Isolated Power Supply
      2. 8.4.2 Using a Bootstrap Diode
        1. 8.4.2.1 Diode Selection
        2. 8.4.2.2 Managing the Bootstrap Voltage
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
        1. 8.5.1.1 Solder-Joint Reliability
        2. 8.5.1.2 Power-Loop Inductance
        3. 8.5.1.3 Signal-Ground Connection
        4. 8.5.1.4 Bypass Capacitors
        5. 8.5.1.5 Switch-Node Capacitance
        6. 8.5.1.6 Signal Integrity
        7. 8.5.1.7 High-Voltage Spacing
        8. 8.5.1.8 Thermal Recommendations
      2. 8.5.2 Layout Examples
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Export Control Notice
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • RQZ|54
サーマルパッド・メカニカル・データ
発注情報

Electrical Characteristics

Unless otherwise noted: voltage, resistance, capacitance, and inductance are respect to GND; –40℃ ≤ TJ ≤ 125℃;
VDS = 480V; 9V ≤ VVDD ≤ 18V; VIN = 0V; RDRV connected to LDO5V; LBBSW = 4.7µH
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
GAN POWER TRANSISTOR
RDS(on) Drain-source on resistance VIN = 5V, TJ = 25°C 26 35
VIN = 5V, TJ = 125°C 45
VSD Third-quadrant mode source-drain voltage I= 0.1A 3.8 V
IS = 20A 3 5 V
IDSS Drain leakage current VDS = 600V, TJ = 25°C 1 uA
VDS = 600V, TJ = 125°C 10 uA
COSS Output capacitance VDS = 400V 130 170 pF
CO(er) Energy related effective output capacitance VDS = 0V to 400V 230 276 335 pF
CO(tr) Time related effective output capacitance 430 pF
QOSS Output charge 160 175 nC
QRR Reverse recovery charge 0 nC
VDD – SUPPLY CURRENTS
VDD quiescent current (LMG3422) VVDD = 12V, VIN = 0V or 5V 700 1200 uA
VDD quiescent current (LMG3425) VVDD = 12V, VIN = 0V or 5V 780 1300 uA
VDD operating current VVDD = 12V, fIN  = 140kHz, soft-switching 13 18 mA
BUCK BOOST CONVERTER
VNEG output voltage VNEG sinking 40mA –14 V
IBBSW,PK(low) Peak BBSW sourcing current at low peak current mode setting
(Peak external buck-boost inductor current)
0.3 0.4 0.5 A
IBBSW,PK(high) Peak BBSW sourcing current at high peak current mode setting
(Peak external buck-boost inductor current)
0.8 1 1.2 A
High peak current mode setting enable – IN positive-going threshold frequency 280 420 515 kHz
LDO5V
Output voltage LDO5V sourcing 25mA 4.75 5 5.25 V
Short-circuit current 25 50 100 mA
IN
VIN,IT+ Positive-going input threshold voltage 1.7 1.9 2.45 V
VIN,IT– Negative-going input threshold voltage 0.7 1 1.3 V
Input threshold hysteresis 0.7 0.9 1.3 V
Input pulldown resistance VIN = 2V 100 150 200
FAULTOC, TEMP – OUPUT DRIVE
Low-level output voltage Output sinking 8mA 0.16 0.4 V
High-level output voltage Output sourcing 8mA, Measured as
VLDO5V – VO
0.2 0.45 V
VDD, VNEG – UNDER VOLTAGE LOCKOUT
VVDD,T+(UVLO) VDD UVLO – positive-going threshold voltage  6.5 7 7.5 V
VDD UVLO – negative-going threshold voltage 6.1 6.5 7 V
VDD UVLO – Input threshold voltage hysteresis 510 mV
VNEG UVLO – negative-going threshold voltage –13.6 –13.0 –12.3 V
VNEG UVLO – positive-going threshold voltage –13.2 –12.75 –12.1 V
GATE DRIVER
Turn-on slew rate From VDS < 320V to VDS < 80V, RDRV disconnected from LDO5V, RRDRV = 300kΩ, TJ = 25℃, VBUS = 400V, LHB current = 10A, see Figure 6-1   20 V/ns
From VDS < 320V to VDS < 80V, RDRV tied to LDO5V, TJ = 25℃, VBUS = 400V, LHB current = 10A, see Figure 6-1    100 V/ns
From VDS < 320V to VDS < 80V, RDRV disconnected from LDO5V, RRDRV = 0Ω, T= 25℃, VBUS = 400V, LHB current = 10A, see Figure 6-1         150 V/ns
Maximum GaN FET switching frequency. VNEG rising to > –13.25V, soft-switched, maximum switching frequency derated for VVDD < 9V  2.2 MHz
FAULTS
IT(OC) DRAIN overcurrent fault – threshold current 60 70 80 A
IT(SC) DRAIN short-circuit fault – threshold current 80 95 110 A
di/dtT(SC) di/dt threshold between overcurrent and short-circuit faults 150 A/µs
GaN temperature fault – postive-going threshold temperature 175 °C
GaN Temperature fault – threshold temperature hysteresis 30 °C
Driver temperature fault – positive-going threshold temperature 185 °C
Driver Temperature fault – threshold temperature hysteresis 20 °C
TEMP
Output Frequency 4.5 9 14 kHz
Output PWM Duty Cycle GaN TJ = 150℃ 82 %
GaN TJ = 125℃ 58.5 64.6 70 %
GaN TJ = 85℃ 36.2 40 43.7 %
GaN TJ = 25℃ 0.3 3 6 %
IDEAL-DIODE MODE CONTROL
VT(3rd) Drain-source third-quadrant detection – threshold voltage –0.15 0 0.15 V
IT(ZC) Drain zero-current detection – threshold current 0℃ ≤ TJ ≤ 125℃ –0.2 0 0.2 A
–40℃ ≤ TJ ≤ 0℃ –0.35 0 0.35 A