SNAS597C July   2012  – January 2016 LMK04816

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics: Clock Output AC Charcteristics
  7. Parameter Measurement Information
    1. 7.1 Charge Pump Current Specification Definitions
      1. 7.1.1 Charge-Pump Output Current Magnitude Variation vs Charge-Pump Output Voltage
      2. 7.1.2 Charge-Pump Sink Current vs Charge-Pump Output Source Current Mismatch
      3. 7.1.3 Charge-Pump Output Current Magnitude Variation vs Temperature
    2. 7.2 Differential Voltage Measurement Terminology
  8. Detailed Description
    1. 8.1 Overview
      1. 8.1.1  System Architecture
      2. 8.1.2  PLL1 Redundant Reference Inputs (CLKin0/CLKin0*, CLKin1/CLKin1*, and CLKin2/CLKin2*)
      3. 8.1.3  PLL1 Tunable Crystal Support
      4. 8.1.4  VCXO and CRYSTAL-Buffered Outputs
      5. 8.1.5  Frequency Holdover
      6. 8.1.6  Integrated Loop Filter Poles
      7. 8.1.7  Internal VCO
      8. 8.1.8  External VCO Mode
      9. 8.1.9  Clock Distribution
        1. 8.1.9.1 CLKout Divider
        2. 8.1.9.2 CLKout Delay
        3. 8.1.9.3 Programmable Output Type
        4. 8.1.9.4 Clock Output Synchronization
      10. 8.1.10 0-Delay
      11. 8.1.11 Default Start-Up Clocks
      12. 8.1.12 Status Pins
      13. 8.1.13 Register Readback
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Serial MICROWIRE Timing Diagram
      2. 8.3.2  Advanced MICROWIRE Timing Diagrams
        1. 8.3.2.1 Three Extra Clocks or Double Program
        2. 8.3.2.2 Three Extra Clocks with LEuWire High
        3. 8.3.2.3 Readback
      3. 8.3.3  Inputs and Outputs
        1. 8.3.3.1 PLL1 Reference Inputs (CLKin0, CLKin1, and CLKin2)
        2. 8.3.3.2 PLL2 OSCin and OSCin* Port
        3. 8.3.3.3 Crystal Oscillator
      4. 8.3.4  Input Clock Switching
        1. 8.3.4.1 Input Clock Switching - Manual Mode
        2. 8.3.4.2 Input Clock Switching - Pin Select Mode
          1. 8.3.4.2.1 Pin Select Mode and Host
          2. 8.3.4.2.2 Switch Event Without Holdover
          3. 8.3.4.2.3 Switch Event With Holdover
        3. 8.3.4.3 Input Clock Switching - Automatic Mode
        4. 8.3.4.4 Input Clock Switching - Automatic Mode With Pin Select
      5. 8.3.5  Holdover Mode
        1. 8.3.5.1 Enable Holdover
        2. 8.3.5.2 Entering Holdover
        3. 8.3.5.3 During Holdover
        4. 8.3.5.4 Exiting holdover
        5. 8.3.5.5 Holdover Frequency Accuracy and DAC Performance
        6. 8.3.5.6 Holdover Mode - Automatic Exit of Holdover
      6. 8.3.6  PLLs
        1. 8.3.6.1 PLL1
        2. 8.3.6.2 PLL2
          1. 8.3.6.2.1 PLL2 Frequency Doubler
        3. 8.3.6.3 Digital Lock Detect
      7. 8.3.7  Status Pins
        1. 8.3.7.1 Logic Low
        2. 8.3.7.2 Digital Lock Detect
        3. 8.3.7.3 Holdover Status
        4. 8.3.7.4 DAC
        5. 8.3.7.5 PLL Divider Outputs
        6. 8.3.7.6 CLKinX_LOS
        7. 8.3.7.7 CLKinX Selected
        8. 8.3.7.8 MICROWIRE Readback
      8. 8.3.8  VCO
      9. 8.3.9  Clock Distribution
        1. 8.3.9.1 Fixed Digital Delay
          1. 8.3.9.1.1 Fixed Digital Delay - Example
        2. 8.3.9.2 Clock Output Synchronization (SYNC)
          1. 8.3.9.2.1 Effect of SYNC
          2. 8.3.9.2.2 Methods of Generating SYNC
          3. 8.3.9.2.3 Avoiding Clock Output Interruption due to SYNC
          4. 8.3.9.2.4 SYNC Timing
          5. 8.3.9.2.5 Dynamically Programming Digital Delay
            1. 8.3.9.2.5.1 Absolute versus Relative Dynamic Digital Delay
            2. 8.3.9.2.5.2 Dynamic Digital Delay and 0-Delay Mode
            3. 8.3.9.2.5.3 SYNC and Minimum Step Size
            4. 8.3.9.2.5.4 Programming Overview
            5. 8.3.9.2.5.5 Internal Dynamic Digital Delay Timing
            6. 8.3.9.2.5.6 Other Timing Requirements
            7. 8.3.9.2.5.7 Absolute Dynamic Digital Delay
              1. 8.3.9.2.5.7.1 Absolute Dynamic Digital Delay - Example
            8. 8.3.9.2.5.8 Relative Dynamic Digital Delay
              1. 8.3.9.2.5.8.1 Relative Dynamic Digital Delay - Example
      10. 8.3.10 0-Delay Mode
    4. 8.4 Device Functional Modes
      1. 8.4.1 Mode Selection
      2. 8.4.2 Operating Modes
        1. 8.4.2.1 Dual PLL
        2. 8.4.2.2 0-Delay Dual PLL
        3. 8.4.2.3 Single PLL
        4. 8.4.2.4 0-delay Single PLL
        5. 8.4.2.5 Clock Distribution
    5. 8.5 Programming
      1. 8.5.1 Special Programming Case for R0 to R5 for CLKoutX_Y_DIV and CLKoutX_Y_DDLY
        1. 8.5.1.1 Example
      2. 8.5.2 Recommended Programming Sequence
        1. 8.5.2.1 Overview
      3. 8.5.3 Readback
        1. 8.5.3.1 Readback - Example
    6. 8.6 Register Maps
      1. 8.6.1 Register Map and Readback Register Map
      2. 8.6.2 Default Device Register Settings After Power On Reset
      3. 8.6.3 Register Descriptions
        1. 8.6.3.1  Registers R0 to R5
          1. 8.6.3.1.1 CLKoutX_Y_PD, Powerdown CLKoutX_Y Output Path
          2. 8.6.3.1.2 CLKoutX_Y_OSCin_Sel, Clock group source
          3. 8.6.3.1.3 CLKoutY_ADLY_SEL[29], CLKoutX_ADLY_SEL[28], Select Analog Delay
          4. 8.6.3.1.4 CLKoutX_Y_DDLY, Clock Channel Digital Delay
          5. 8.6.3.1.5 RESET
          6. 8.6.3.1.6 POWERDOWN
          7. 8.6.3.1.7 CLKoutX_Y_HS, Digital Delay Half Shift
          8. 8.6.3.1.8 CLKoutX_Y_DIV, Clock Output Divide
        2. 8.6.3.2  Registers R6 TO R8
          1. 8.6.3.2.1 CLKoutX_TYPE
          2. 8.6.3.2.2 CLKoutX_Y_ADLY
        3. 8.6.3.3  Register R10
          1. 8.6.3.3.1 OSCout0_TYPE
          2. 8.6.3.3.2 EN_OSCout0, OSCout0 Output Enable
          3. 8.6.3.3.3 OSCout0_MUX, Clock Output Mux
          4. 8.6.3.3.4 PD_OSCin, OSCin Powerdown Control
          5. 8.6.3.3.5 OSCout_DIV, Oscillator Output Divide
          6. 8.6.3.3.6 VCO_MUX
          7. 8.6.3.3.7 EN_FEEDBACK_MUX
          8. 8.6.3.3.8 VCO_DIV, VCO Divider
          9. 8.6.3.3.9 FEEDBACK_MUX
        4. 8.6.3.4  Register R11
          1. 8.6.3.4.1 MODE: Device Mode
          2. 8.6.3.4.2 EN_SYNC, Enable Synchronization
          3. 8.6.3.4.3 NO_SYNC_CLKoutX_Y
          4. 8.6.3.4.4 SYNC_CLKin2_MUX
          5. 8.6.3.4.5 SYNC_QUAL
          6. 8.6.3.4.6 SYNC_POL_INV
          7. 8.6.3.4.7 SYNC_EN_AUTO
          8. 8.6.3.4.8 SYNC_TYPE
          9. 8.6.3.4.9 EN_PLL2_XTAL
        5. 8.6.3.5  Register R12
          1. 8.6.3.5.1 LD_MUX
          2. 8.6.3.5.2 LD_TYPE
          3. 8.6.3.5.3 SYNC_PLLX_DLD
          4. 8.6.3.5.4 EN_TRACK
          5. 8.6.3.5.5 HOLDOVER_MODE
        6. 8.6.3.6  Register R13
          1. 8.6.3.6.1 HOLDOVER_MUX
          2. 8.6.3.6.2 HOLDOVER_TYPE
          3. 8.6.3.6.3 Status_CLKin1_MUX
          4. 8.6.3.6.4 Status_CLKin0_TYPE
          5. 8.6.3.6.5 DISABLE_DLD1_DET
          6. 8.6.3.6.6 Status_CLKin0_MUX
          7. 8.6.3.6.7 CLKin_SELECT_MODE
          8. 8.6.3.6.8 CLKin_Sel_INV
          9. 8.6.3.6.9 EN_CLKinX
        7. 8.6.3.7  Register 14
          1. 8.6.3.7.1 LOS_TIMEOUT
          2. 8.6.3.7.2 EN_LOS
          3. 8.6.3.7.3 Status_CLKin1_TYPE
          4. 8.6.3.7.4 CLKinX_BUF_TYPE, PLL1 CLKinX/CLKinX* Buffer Type
          5. 8.6.3.7.5 DAC_HIGH_TRIP
          6. 8.6.3.7.6 DAC_LOW_TRIP
          7. 8.6.3.7.7 EN_VTUNE_RAIL_DET
        8. 8.6.3.8  Register 15
          1. 8.6.3.8.1 MAN_DAC
          2. 8.6.3.8.2 EN_MAN_DAC
          3. 8.6.3.8.3 HOLDOVER_DLD_CNT
          4. 8.6.3.8.4 FORCE_HOLDOVER
        9. 8.6.3.9  Register 16
          1. 8.6.3.9.1 XTAL_LVL
        10. 8.6.3.10 Register 23
          1. 8.6.3.10.1 DAC_CNT
        11. 8.6.3.11 REGISTER 24
          1. 8.6.3.11.1 PLL2_C4_LF, PLL2 Integrated Loop Filter Component
          2. 8.6.3.11.2 PLL2_C3_LF, PLL2 Integrated Loop Filter Component
          3. 8.6.3.11.3 PLL2_R4_LF, PLL2 Integrated Loop Filter Component
          4. 8.6.3.11.4 PLL2_R3_LF, PLL2 Integrated Loop Filter Component
          5. 8.6.3.11.5 PLL1_N_DLY
          6. 8.6.3.11.6 PLL1_R_DLY
          7. 8.6.3.11.7 PLL1_WND_SIZE
        12. 8.6.3.12 Register 25
          1. 8.6.3.12.1 DAC_CLK_DIV
          2. 8.6.3.12.2 PLL1_DLD_CNT
        13. 8.6.3.13 Register 26
          1. 8.6.3.13.1 PLL2_WND_SIZE
          2. 8.6.3.13.2 EN_PLL2_REF_2X, PLL2 Reference Frequency Doubler
          3. 8.6.3.13.3 PLL2_CP_POL, PLL2 Charge Pump Polarity
          4. 8.6.3.13.4 PLL2_CP_GAIN, PLL2 Charge Pump Current
          5. 8.6.3.13.5 PLL2_DLD_CNT
          6. 8.6.3.13.6 PLL2_CP_TRI, PLL2 Charge Pump Tri-State
        14. 8.6.3.14 Register 27
          1. 8.6.3.14.1 PLL1_CP_POL, PLL1 Charge Pump Polarity
          2. 8.6.3.14.2 PLL1_CP_GAIN, PLL1 Charge Pump Current
          3. 8.6.3.14.3 CLKinX_PreR_DIV
          4. 8.6.3.14.4 PLL1_R, PLL1 R Divider
          5. 8.6.3.14.5 PLL1_CP_TRI, PLL1 Charge Pump Tri-State
        15. 8.6.3.15 Register 28
          1. 8.6.3.15.1 PLL2_R, PLL2 R Divider
          2. 8.6.3.15.2 PLL1_N, PLL1 N Divider
        16. 8.6.3.16 Register 29
          1. 8.6.3.16.1 OSCin_FREQ, PLL2 Oscillator Input Frequency Register
          2. 8.6.3.16.2 PLL2_FAST_PDF, High PLL2 Phase Detector Frequency
          3. 8.6.3.16.3 PLL2_N_CAL, PLL2 N Calibration Divider
        17. 8.6.3.17 Register 30
          1. 8.6.3.17.1 PLL2_P, PLL2 N Prescaler Divider
          2. 8.6.3.17.2 PLL2_N, PLL2 N Divider
        18. 8.6.3.18 Register 31
          1. 8.6.3.18.1 READBACK_LE
          2. 8.6.3.18.2 READBACK_ADDR
          3. 8.6.3.18.3 uWire_LOCK
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Loop Filter
        1. 9.1.1.1 PLL1
        2. 9.1.1.2 PLL2
      2. 9.1.2 Driving CLKin and OSCin Inputs
        1. 9.1.2.1 Driving CLKin Pins With a Differential Source
        2. 9.1.2.2 Driving CLKin Pins With a Single-Ended Source
      3. 9.1.3 Termination and Use of Clock Output (Drivers)
        1. 9.1.3.1 Termination for DC-Coupled Differential Operation
        2. 9.1.3.2 Termination for AC-Coupled Differential Operation
        3. 9.1.3.3 Termination for Single-Ended Operation
      4. 9.1.4 Frequency Planning With the LMK04816
      5. 9.1.5 PLL Programming
        1. 9.1.5.1 Example PLL2 N Divider Programming
      6. 9.1.6 Digital Lock Detect Frequency Accuracy
        1. 9.1.6.1 Minimum Lock Time Calculation Example
      7. 9.1.7 Calculating Dynamic Digital Delay Values for Any Divide
        1. 9.1.7.1 Example
      8. 9.1.8 Optional Crystal Oscillator Implementation (OSCin and OSCin*)
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Device Selection
          1. 9.2.2.1.1 Clock Architect
          2. 9.2.2.1.2 Clock Design Tool
          3. 9.2.2.1.3 Calculation Using LCM
        2. 9.2.2.2 Device Configuration
          1. 9.2.2.2.1 PLL LO Reference
          2. 9.2.2.2.2 POR Clock
        3. 9.2.2.3 PLL Loop Filter Design
          1. 9.2.2.3.1 PLL1 Loop Filter Design
          2. 9.2.2.3.2 PLL2 Loop Filter Design
        4. 9.2.2.4 Clock Output Assignment
        5. 9.2.2.5 Other Device Specific Configuration
          1. 9.2.2.5.1 Digital Lock Detect
          2. 9.2.2.5.2 Holdover
        6. 9.2.2.6 Device Programming
      3. 9.2.3 Application Curve
    3. 9.3 System Examples
  10. 10Power Supply Recommendations
    1. 10.1 Pin Connection Recommendations
      1. 10.1.1 Vcc Pins and Decoupling
        1. 10.1.1.1 Vcc2, Vcc3, Vcc10, Vcc11, Vcc12, Vcc13 (CLKout Vccs)
        2. 10.1.1.2 Vcc1 (VCO), Vcc4 (Digital), and Vcc9 (PLL2)
        3. 10.1.1.3 Vcc6 (PLL1 Charge Pump) and Vcc8 (PLL2 Charge Pump)
        4. 10.1.1.4 Vcc5 (CLKin), Vcc7 (OSCin and OSCout0)
      2. 10.1.2 LVPECL Outputs
      3. 10.1.3 Unused Clock Outputs
      4. 10.1.4 Unused Clock Inputs
      5. 10.1.5 LDO Bypass
    2. 10.2 Current Consumption and Power Dissipation Calculations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

1 Features

  • Ultralow RMS Jitter Performance
    • 100-fs RMS Jitter (12 kHz to 20 MHz)
    • 123-fs RMS Jitter (100 Hz to 20 MHz)
  • Dual-Loop PLLATINUM™ PLL Architecture
    • PLL1
      • Integrated Low-Noise Crystal Oscillator Circuit
      • Holdover Mode When Input Clocks are Lost
        • Automatic or Manual Triggering and Recovery
    • PLL2
      • Normalized 1-Hz PLL Noise Floor of
        –227 dBc/Hz
      • Phase Detector Rate Up to 155 MHz
      • OSCin Frequency-Doubler
      • Integrated Low-Noise VCO
      • VCO Frequency Ranges From 2370 MHz to 2600 MHz
  • Three Redundant Input Clocks With LOS
    • Automatic and Manual Switch-Over Modes
  • 50% Duty Cycle Output Divides, 1 to 1045 (Even and Odd)
  • LVPECL, LVDS, or LVCMOS Programmable Outputs
  • Precision Digital Delay, Fixed or Dynamically-Adjustable
  • 25-ps Step Analog Delay Control, Up to 575 ps
  • 1/2 Clock Distribution Period Step Digital Delay, up to 522 Steps
  • 13 Differential Outputs; up to 26 Single-Ended
    • Up to 5 VCXO and Crystal-Buffered Outputs
  • Clock Rates of Up to 2600 MHz
  • 0-Delay Mode
  • Three Default Clock Outputs at Power Up
  • Multi-Mode: Dual PLL, Single PLL, and Clock Distribution
  • Industrial Temperature Range: –40°C to +85°C
  • 3.15-V to 3.45-V Operation
  • Package: 64-Pin WQFN (9.0 × 9.0 × 0.8 mm)

2 Applications

  • Data Converter Clocking and Wireless Infrastructure
  • Networking, SONET or SDH, DSLAM
  • Medical, Video, Military, and Aerospace
  • Test and Measurement

3 Description

The LMK04816 device is the industry's highest performance clock conditioner with superior clock jitter cleaning, generation, and distribution with advanced features to meet next generation system requirements. The dual-loop PLLATINUM architecture enables 111-fs RMS jitter (12 kHz to
20 MHz) using a low-noise VCXO module or sub-200-fs RMS jitter (12 kHz to 20 MHz) using a low-cost external crystal and varactor diode.

The dual-loop architecture consists of two high-performance phase-locked loops (PLL), a low-noise crystal oscillator circuit, and a high-performance voltage controlled oscillator (VCO). The first PLL (PLL1) provides a low-noise jitter cleaner function while the second PLL (PLL2) performs the clock generation. PLL1 can be configured to either work with an external VCXO module or the integrated crystal oscillator with an external tunable crystal and varactor diode. When used with a very narrow loop bandwidth, PLL1 uses the superior close-in phase noise (offsets below 50 kHz) of the VCXO module or the tunable crystal to clean the input clock. The output of PLL1 is used as the clean input reference to PLL2 where it locks the integrated VCO. The loop bandwidth of PLL2 can be optimized to clean the far-out phase noise (offsets above 50 kHz) where the integrated VCO outperforms the VCXO module or tunable crystal used in PLL1.

Device Information(1)

PART NUMBER PACKAGE BODY SIZE (NOM)
LMK04816 WQFN (64) 9.00 mm × 9.00 mm
  1. For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

LMK04816 30179340.gif

4 Revision History

Changes from B Revision (April 2013) to C Revision

  • Added Pin Configuration and Functions section, ESD Ratings table, Thermal Information table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section Go
  • Changed organization of Detailed Description section for improved readability. Go
  • Added Typical Application section for expanded example of device use.Go

Changes from A Revision (April 2013) to B Revision

  • Changed layout of National Data Sheet to TI format Go