JAJSN00A September   2022  – February 2025 LMK5B33414

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Diagrams
    7. 6.7 Typical Characteristics
  8. Parameter Measurement Information
    1. 7.1 Differential Voltage Measurement Terminology
    2. 7.2 Output Clock Test Configurations
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
      1. 8.2.1 PLL Architecture Overview
      2. 8.2.2 DPLL
        1. 8.2.2.1 Independent DPLL Operation
        2. 8.2.2.2 Cascaded DPLL Operation
        3. 8.2.2.3 APLL Cascaded With DPLL
      3. 8.2.3 APLL-Only Mode
    3. 8.3 Feature Description
      1. 8.3.1  Oscillator Input (XO)
      2. 8.3.2  Reference Inputs
      3. 8.3.3  Clock Input Interfacing and Termination
      4. 8.3.4  Reference Input Mux Selection
        1. 8.3.4.1 Automatic Input Selection
        2. 8.3.4.2 Manual Input Selection
      5. 8.3.5  Hitless Switching
        1. 8.3.5.1 Hitless Switching With Phase Cancellation
        2. 8.3.5.2 Hitless Switching With Phase Slew Control
        3. 8.3.5.3 Hitless Switching With 1PPS Inputs
      6. 8.3.6  Gapped Clock Support on Reference Inputs
      7. 8.3.7  Input Clock and PLL Monitoring, Status, and Interrupts
        1. 8.3.7.1 XO Input Monitoring
        2. 8.3.7.2 Reference Input Monitoring
          1. 8.3.7.2.1 Reference Validation Timer
          2. 8.3.7.2.2 Frequency Monitoring
          3. 8.3.7.2.3 Missing Pulse Monitor (Late Detect)
          4. 8.3.7.2.4 Runt Pulse Monitor (Early Detect)
          5. 8.3.7.2.5 Phase Valid Monitor for 1PPS Inputs
        3. 8.3.7.3 PLL Lock Detectors
        4. 8.3.7.4 Tuning Word History
        5. 8.3.7.5 Status Outputs
        6. 8.3.7.6 Interrupt
      8. 8.3.8  PLL Relationships
        1. 8.3.8.1  PLL Frequency Relationships
          1. 8.3.8.1.1 APLL Phase Frequency Detector (PFD) and Charge Pump
          2. 8.3.8.1.2 APLL VCO Frequency
          3. 8.3.8.1.3 DPLL TDC Frequency
          4. 8.3.8.1.4 DPLL VCO Frequency
          5. 8.3.8.1.5 Clock Output Frequency
        2. 8.3.8.2  Analog PLLs (APLL1, APLL2, APLL3)
        3. 8.3.8.3  APLL Reference Paths
          1. 8.3.8.3.1 APLL XO Doubler
          2. 8.3.8.3.2 APLL XO Reference (R) Divider
        4. 8.3.8.4  APLL Feedback Divider Paths
          1. 8.3.8.4.1 APLL N Divider With Sigma-Delta Modulator (SDM)
        5. 8.3.8.5  APLL Loop Filters (LF1, LF2, LF3)
        6. 8.3.8.6  APLL Voltage-Controlled Oscillators (VCO1, VCO2, VCO3)
          1. 8.3.8.6.1 VCO Calibration
        7. 8.3.8.7  APLL VCO Clock Distribution Paths
        8. 8.3.8.8  DPLL Reference (R) Divider Paths
        9. 8.3.8.9  DPLL Time-to-Digital Converter (TDC)
        10. 8.3.8.10 DPLL Loop Filter (DLF)
        11. 8.3.8.11 DPLL Feedback (FB) Divider Path
      9. 8.3.9  Output Clock Distribution
      10. 8.3.10 Output Source Muxes
      11. 8.3.11 Output Channel Muxes
      12. 8.3.12 Output Dividers (OD)
      13. 8.3.13 SYSREF/1PPS Output
      14. 8.3.14 Output Delay
      15. 8.3.15 Clock Output Drivers
        1. 8.3.15.1 Differential Output
        2. 8.3.15.2 LVCMOS Output
      16. 8.3.16 Clock Output Interfacing and Termination
      17. 8.3.17 Glitchless Output Clock Start-Up
      18. 8.3.18 Output Auto-Mute During LOL
      19. 8.3.19 Output Synchronization (SYNC)
      20. 8.3.20 Zero-Delay Mode (ZDM)
      21. 8.3.21 DPLL Programmable Phase Delay
      22. 8.3.22 Time Elapsed Counter (TEC)
        1. 8.3.22.1 Configuring TEC Functionality
        2. 8.3.22.2 SPI as a Trigger Source
        3. 8.3.22.3 GPIO Pin as a TEC Trigger Source
          1. 8.3.22.3.1 An Example: Making a Time Elapsed Measurement Using TEC and GPIO1 as Trigger
        4. 8.3.22.4 TEC Timing
        5. 8.3.22.5 Other TEC Behavior
    4. 8.4 Device Functional Modes
      1. 8.4.1 DPLL Operating States
        1. 8.4.1.1 Free-Run
        2. 8.4.1.2 Lock Acquisition
        3. 8.4.1.3 DPLL Locked
        4. 8.4.1.4 Holdover
      2. 8.4.2 Digitally-Controlled Oscillator (DCO) Frequency and Phase Adjustment
        1. 8.4.2.1 DPLL DCO Control
        2. 8.4.2.2 DPLL DCO Relative Adjustment Frequency Step Size
        3. 8.4.2.3 APLL DCO Frequency Step Size
      3. 8.4.3 APLL Frequency Control
      4. 8.4.4 Device Start-Up
        1. 8.4.4.1 Device Power-On Reset (POR)
        2. 8.4.4.2 PLL Start-Up Sequence
        3. 8.4.4.3 Start-Up Options for Register Configuration
        4. 8.4.4.4 GPIO1 and SCS_ADD Functionalities
        5. 8.4.4.5 ROM Page Selection
        6. 8.4.4.6 ROM Detailed Description
        7. 8.4.4.7 EEPROM Overlay
    5. 8.5 Programming
      1. 8.5.1 Memory Overview
      2. 8.5.2 Interface and Control
        1. 8.5.2.1 Programming Through TICS Pro
        2. 8.5.2.2 SPI Serial Interface
        3. 8.5.2.3 I2C Serial Interface
      3. 8.5.3 General Register Programming Sequence
      4. 8.5.4 Steps to Program the EEPROM
        1. 8.5.4.1 Overview of the SRAM Programming Methods
        2. 8.5.4.2 EEPROM Programming With the Register Commit Method
        3. 8.5.4.3 EEPROM Programming With the Direct Writes Method or Mixed Method
        4. 8.5.4.4 Five MSBs of the I2C Address and the EEPROM Revision Number
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Device Start-Up Sequence
      2. 9.1.2 Power Down (PD#) Pin
      3. 9.1.3 Strap Pins for Start-Up
      4. 9.1.4 Pin States
      5. 9.1.5 ROM and EEPROM
      6. 9.1.6 Power Rail Sequencing, Power Supply Ramp Rate, and Mixing Supply Domains
        1. 9.1.6.1 Power-On Reset (POR) Circuit
        2. 9.1.6.2 Power Up From a Single-Supply Rail
        3. 9.1.6.3 Power Up From Split-Supply Rails
        4. 9.1.6.4 Non-Monotonic or Slow Power-Up Supply Ramp
      7. 9.1.7 Slow or Delayed XO Start-Up
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Best Design Practices
    4. 9.4 Power Supply Recommendations
      1. 9.4.1 Power Supply Bypassing
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
      2. 9.5.2 Layout Example
      3. 9.5.3 Thermal Reliability
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Development Support
        1. 10.1.1.1 Clock Tree Architect Programming Software
        2. 10.1.1.2 Texas Instruments Clocks and Synthesizers (TICS) Pro Software
        3. 10.1.1.3 PLLatinum™ Simulation Tool
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 ドキュメントの更新通知を受け取る方法
    4. 10.4 サポート・リソース
    5. 10.5 Trademarks
    6. 10.6 静電気放電に関する注意事項
    7. 10.7 用語集
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

SYSREF/1PPS Output

The LMK5B33414 can support system reference clocks from 1PPS to 25MHz including JEDEC JESD204B or JESD204C SYSREF clocks. Any 12-bit output channel divider (except OUT2 and OUT3) can be cascaded with an individual 20-bit SYSREF divider. Set flexible SYSREF divider values to generate the same SYSREF/1PPS frequency on multiple outputs or different frequency multiples of SYSREF/1PPS based on application requirements. When aligning multiple SYSREF outputs, set SYSREF_REQ_MODE 0x1A[5:4] = 11 for resampling of the SYSREF request. The SYSREF/1PPS can also be replicated on GPIO1 or GPIO2 if additional single ended outputs are needed. The SYSREF request sample source SYSREF_REQ_SEL 0x1A[3:2] must be set to the same source as desired for SYSREF/1PPS output replication.

The SYSREF divider output signals can be replicated on either GPIO1 and GPIO2 to provide additional single ended 3.3V CMOS clocks after start-up if desired. To configure the SYSREF/1PPS output replication the GPIO must be enabled as an output (GPIOx_OUTEN = 1) and one of the SYSREF output to GPIO replication sources must be active. The SYSREF replication source comes from any one of the enabled SYSREF dividers used by or OUT12/13 by register programming (OUT_x_y_SR_GPIO_EN = 1). The GPIOx replicated SYSREF output is after static digital delay but before the analog and digital delay and pulser. The output is a continuous frequency as pulsed SYSREF mode is not supported for the GPIOx replica.

There is some small fixed delay skew between the normal SYSREF and GPIO replicated SYSREF. An LVCMOS output clock is an unbalanced signal with large voltage swing; therefore, the signal can strongly interfere and couple noise onto other jitter-sensitive differential output clocks.