JAJSDF7A January   2017  – May 2017 LMK61E0M

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     Device Images
      1.      ピン配列と単純なブロック図
  4. 改訂履歴
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics - Power Supply
    6. 6.6  3.3-V LVCMOS Output Characteristics
    7. 6.7  OE Input Characteristics
    8. 6.8  ADD Input Characteristics
    9. 6.9  Frequency Tolerance Characteristics
    10. 6.10 Frequency Margining Characteristics
    11. 6.11 Power-On/Reset Characteristics (VDD)
    12. 6.12 I2C-Compatible Interface Characteristics (SDA, SCL)
    13. 6.13 Other Characteristics
    14. 6.14 PLL Clock Output Jitter Characteristics
    15. 6.15 Additional Reliability and Qualification
    16. 6.16 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 Device Output Configurations
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Device Block-Level Description
      2. 8.3.2  Device Configuration Control
      3. 8.3.3  Register File Reference Convention
      4. 8.3.4  Configuring the PLL
      5. 8.3.5  Integrated Oscillator
      6. 8.3.6  Reference Divider and Doubler
      7. 8.3.7  Phase Frequency Detector
      8. 8.3.8  Feedback Divider (N)
      9. 8.3.9  Fractional Engine
      10. 8.3.10 Charge Pump
      11. 8.3.11 Loop Filter
      12. 8.3.12 VCO Calibration
      13. 8.3.13 High-Speed Output Divider
      14. 8.3.14 High-Speed Clock Output
      15. 8.3.15 Device Status
        1. 8.3.15.1 Loss of Lock
    4. 8.4 Device Functional Modes
      1. 8.4.1 Interface and Control
      2. 8.4.2 DCXO Mode and Frequency Margining
        1. 8.4.2.1 DCXO Mode
        2. 8.4.2.2 Fine Frequency Margining
        3. 8.4.2.3 Coarse Frequency Margining
    5. 8.5 Programming
      1. 8.5.1 I2C Serial Interface
      2. 8.5.2 Block Register Write
      3. 8.5.3 Block Register Read
      4. 8.5.4 Write SRAM
      5. 8.5.5 Write EEPROM
      6. 8.5.6 Read SRAM
      7. 8.5.7 Read EEPROM
    6. 8.6 Register Maps
      1. 8.6.1 Register Descriptions
        1. 8.6.1.1  VNDRID_BY1 Register; R0
        2. 8.6.1.2  VNDRID_BY0 Register; R1
        3. 8.6.1.3  PRODID Register; R2
        4. 8.6.1.4  REVID Register; R3
        5. 8.6.1.5  SLAVEADR Register; R8
        6. 8.6.1.6  EEREV Register; R9
        7. 8.6.1.7  DEV_CTL Register; R10
        8. 8.6.1.8  XO_CAPCTRL_BY1 Register; R16
        9. 8.6.1.9  XO_CAPCTRL_BY0 Register; R17
        10. 8.6.1.10 CMOSCTL Register; R20
        11. 8.6.1.11 DIFFCTL Register; R21
        12. 8.6.1.12 OUTDIV_BY1 Register; R22
        13. 8.6.1.13 OUTDIV_BY0 Register; R23
        14. 8.6.1.14 RDIVCMOSCTL Register; R24
        15. 8.6.1.15 PLL_NDIV_BY1 Register; R25
        16. 8.6.1.16 PLL_NDIV_BY0 Register; R26
        17. 8.6.1.17 PLL_FRACNUM_BY2 Register; R27
        18. 8.6.1.18 PLL_FRACNUM_BY1 Register; R28
        19. 8.6.1.19 PLL_FRACNUM_BY0 Register; R29
        20. 8.6.1.20 PLL_FRACDEN_BY2 Register; R30
        21. 8.6.1.21 PLL_FRACDEN_BY1 Register; R31
        22. 8.6.1.22 PLL_FRACDEN_BY0 Register; R32
        23. 8.6.1.23 PLL_MASHCTRL Register; R33
        24. 8.6.1.24 PLL_CTRL0 Register; R34
        25. 8.6.1.25 PLL_CTRL1 Register; R35
        26. 8.6.1.26 PLL_LF_R2 Register; R36
        27. 8.6.1.27 PLL_LF_C1 Register; R37
        28. 8.6.1.28 PLL_LF_R3 Register; R38
        29. 8.6.1.29 PLL_LF_C3 Register; R39
        30. 8.6.1.30 PLL_CALCTRL Register; R42
        31. 8.6.1.31 NVMSCRC Register; R47
        32. 8.6.1.32 NVMCNT Register; R48
        33. 8.6.1.33 NVMCTL Register; R49
        34. 8.6.1.34 MEMADR Register; R51
        35. 8.6.1.35 NVMDAT Register; R52
        36. 8.6.1.36 RAMDAT Register; R53
        37. 8.6.1.37 NVMUNLK Register; R56
        38. 8.6.1.38 INT_LIVE Register; R66
        39. 8.6.1.39 SWRST Register; R72
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 PLL Loop Filter Design
        2. 9.2.2.2 Spur Mitigation Techniques
          1. 9.2.2.2.1 Phase Detection Spur
          2. 9.2.2.2.2 Integer Boundary Fractional Spur
          3. 9.2.2.2.3 Primary Fractional Spur
          4. 9.2.2.2.4 Sub-Fractional Spur
        3. 9.2.2.3 Device Programming
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Ensured Thermal Reliability
      2. 11.1.2 Best Practices for Signal Integrity
      3. 11.1.3 Recommended Solder Reflow Profile
    2. 11.2 Layout Example
  12. 12デバイスおよびドキュメントのサポート
    1. 12.1 ドキュメントのサポート
      1. 12.1.1 関連資料
    2. 12.2 ドキュメントの更新通知を受け取る方法
    3. 12.3 コミュニティ・リソース
    4. 12.4 商標
    5. 12.5 静電気放電に関する注意事項
    6. 12.6 Glossary
  13. 13メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

I2C Serial Interface

The I2C port on the LMK61E0 works as a slave device and supports both the 100-kHz standard mode and 1-MHz fast mode operations. Fast mode imposes a glitch tolerance requirement on the control signals. Therefore, the input receivers ignore pulses of less than 50-ns duration. The I2C timing is given in I2C-Compatible Interface Characteristics (SDA, SCL). The timing diagram is given in Figure 8.

LMK61E0M i2c_timing_diagram_snas674.gifFigure 8. I2C Timing Diagram

In an I2C bus system, the LMK61E0 acts as a slave device and is connected to the serial bus (data bus SDA and lock bus SCL). These are accessed via a 7-bit slave address transmitted as part of an I2C packet. Only the device with a matching slave address responds to subsequent I2C commands. In soft pin mode, the LMK61E0 allows up to three unique slave devices to occupy the I2C bus based on the pin strapping of ADD (tied to VDD, GND or left open). The device slave address is 10110xx (the two LSBs are determined by the ADD pin).

During the data transfer through the I2C interface, one clock pulse is generated for each data bit transferred. The data on the SDA line must be stable during the high period of the clock. The high or low state of the data line can change only when the clock signal on the SCL line is low. The start data transfer condition is characterized by a high-to-low transition on the SDA line while SCL is high. The stop data transfer condition is characterized by a low-to-high transition on the SDA line while SCL is high. The start and stop conditions are always initiated by the master. Every byte on the SDA line must be eight bits long. Each byte must be followed by an acknowledge bit and bytes are sent MSB first. The I2C register structure of the LMK61E0 is shown in Figure 9.

LMK61E0M i2c_register_structure_snas674.gifFigure 9. I2C Register Structure

The acknowledge bit (A) or non-acknowledge bit (A’) is the 9th bit attached to any 8-bit data byte and is always generated by the receiver to inform the transmitter that the byte has been received (when A = 0) or not (when A’ = 0). A = 0 is done by pulling the SDA line low during the 9th clock pulse and A’ = 0 is done by leaving the SDA line high during the 9th clock pulse.

The I2C master initiates the data transfer by asserting a start condition which initiates a response from all slave devices connected to the serial bus. Based on the 8-bit address byte sent by the master over the SDA line (consisting of the 7-bit slave address (MSB first) and an R/W’ bit), the device whose address corresponds to the transmitted address responds by sending an acknowledge bit. All other devices on the bus remain idle while the selected device waits for data transfer with the master.

After the data transfer has occurred, stop conditions are established. In write mode, the master asserts a stop condition to end data transfer during the 10th clock pulse following the acknowledge bit for the last data byte from the slave. In read mode, the master receives the last data byte from the slave but does not pull SDA low during the 9th clock pulse. This is known as a non-acknowledge bit. By receiving the non-acknowledge bit, the slave knows the data transfer is finished and enters the idle mode. The master then takes the data line low during the low period before the 10th clock pulse, and high during the 10th clock pulse to assert a stop condition. A generic transaction is shown in Figure 10.

LMK61E0M generic_programming_sequence_snas674.gifFigure 10. Generic Programming Sequence

The LMK61E0 I2C interface supports Block Register Write/Read, Read/Write SRAM, and Read/Write EEPROM operations. For Block Register Write/Read operations, the I2C master can individually access addressed registers that are made of an 8-bit data byte. The offset of the indexed register is encoded in the register address, as described in Table 1 below.

Table 1. Slave Address Byte

DEVICEA6A5A4A3A2ADD pinR/W
LMK61E0 1 0 1 1 0 0x0, 0x1 or 0x3 1/0