JAJSHL5H October   2011  – June 2019 LMR24210

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     Device Images
      1.      代表的なアプリケーション
  4. 改訂履歴
  5. Pin Configuration and Functions
    1.     Pin Descriptions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Ratings
    4. 6.4 Electrical Characteristics
    5. 6.5 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  COT Control Circuit Overview
      2. 7.3.2  Start-up Regulator (VCC)
      3. 7.3.3  Regulation Comparator
      4. 7.3.4  Zero Coil Current Detect
      5. 7.3.5  Overvoltage Comparator
      6. 7.3.6  On-Time Timer, Shutdown
      7. 7.3.7  Current Limit
      8. 7.3.8  N-Channel Mosfet and Driver
      9. 7.3.9  Soft Start
      10. 7.3.10 Thermal Protection
      11. 7.3.11 Thermal Derating
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Detailed Design Procedure
        1. 8.2.1.1 Custom Design With WEBENCH® Tools
        2. 8.2.1.2 External Components
      2. 8.2.2 Application Curve
  9. Layout
    1. 9.1 Layout Considerations
    2. 9.2 Layout Examples
    3. 9.3 Package Considerations
  10. 10デバイスおよびドキュメントのサポート
    1. 10.1 デバイス・サポート
      1. 10.1.1 開発サポート
        1. 10.1.1.1 WEBENCH®ツールによるカスタム設計
    2. 10.2 ドキュメントの更新通知を受け取る方法
    3. 10.3 コミュニティ・リソース
    4. 10.4 商標
    5. 10.5 静電気放電に関する注意事項
    6. 10.6 Glossary

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Layout Considerations

The LMR24210 regulation, overvoltage, and current limit comparators are very fast and may respond to short duration noise pulses. Layout is therefore critical for optimum performance. It must be as neat and compact as possible, and all external components must be as close to their associated pins of the LMR24210 as possible. Refer to the Functional Block Diagram, the loop formed by CIN, the main and synchronous MOSFET internal to the LMR24210, and the PGND pin must be as small as possible. The connection from the PGND pin to CIN must be as short and direct as possible. Add vias to connect the ground of CIN to a ground plane, located as close as possible to the capacitor. The bootstrap capacitor CBST should be connected as close to the SW and BST pins as possible, and the connecting traces should be thick. The feedback resistors and capacitor RFB1, RFB2, and CFB must be close to the FB pin. A long trace running from VOUT to RFB1 is generally acceptable since this is a low impedance node. Ground RFB2 directly to the AGND pin. Connect the output capacitor COUT to the load and tied directly to the ground plane. Connect the inductor L close to the SW pin with as short a trace as possible to reduce the potential for EMI (electromagnetic interference) generation. If it is expected that the internal dissipation of the LMR24210 produces excessive junction temperature during normal operation, making good use of the PC board’s ground plane can help considerably to dissipate heat. Additionally the use of thick traces, where possible, can help conduct heat away from the LMR24210. Judicious positioning of the PC board within the end product, along with the use of any available air flow (forced or natural convection) can help reduce the junction temperature.