SNAS877 December   2024 LMR60440

PRODMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Enable and Undervoltage Lockout (UVLO)
      2. 7.3.2 Soft Start and Recovery from Dropout
      3. 7.3.3 Frequency Selection With RT
      4. 7.3.4 MODE/SYNC Pin Control
      5. 7.3.5 Output Voltage Selection
      6. 7.3.6 Current Limit
      7. 7.3.7 Hiccup Mode
      8. 7.3.8 Power-Good Function
      9. 7.3.9 Spread Spectrum
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown
      2. 7.4.2 Active Mode
        1. 7.4.2.1 Continuous Conduction Mode (CCM)
        2. 7.4.2.2 Auto Mode - Light Load Operation
        3. 7.4.2.3 FPWM Operation - Light Load Operation
        4. 7.4.2.4 Minimum On-Time
        5. 7.4.2.5 Dropout
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Switching Frequency Selection
        2. 8.2.2.2 Inductor Selection
        3. 8.2.2.3 Output Capacitor Selection
        4. 8.2.2.4 Input Capacitor Selection
        5. 8.2.2.5 Bootstrap Capacitor (CBOOT) Selection
        6. 8.2.2.6 FB Voltage Divider for Adjustable Output Voltages
          1. 8.2.2.6.1 Feedforward Capacitor (CFF) Selection
        7. 8.2.2.7 RPG - PG Pullup Resistor
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 Ground and Thermal Plane Considerations
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Spread Spectrum

The purpose of the spread spectrum is to reduce peak emissions at specific frequencies by spreading emissions across a wider range of frequencies than a part with fixed frequency operation. In most systems containing the LMR60440 device, low frequency conducted emissions from the first few harmonics of the switching frequency can be easily filtered. The LMR60440 spreads the switching frequency 16% above of the set point switching frequency established by the RT resistor. This means that the set point switching frequency established by the RT resistor represents the lower bound of the switching frequency while the device is operating with spread spectrum.

The following conditions overrides spread spectrum, turning spread spectrum off:

  1. An external clock is applied to the MODE/SYNC terminal.
  2. The clock is slowed under light load in AUTO mode – this action occurs when the device switches in PFM mode. In FPWM mode, spread spectrum is active even if there is no load