SNVSA28 December   2014 LP8731-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Tables
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions (Bucks)
    4. 7.4  Thermal Information
    5. 7.5  General Electrical Characteristics
    6. 7.6  Low Dropout Regulators, LDO1 And LDO2
    7. 7.7  Buck Converters SW1, SW2
    8. 7.8  I/O Electrical Characteristics
    9. 7.9  Power-On Reset Threshold/Function (POR)
    10. 7.10 I2C-Compatible Interface Timing
    11. 7.11 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Features Description
      1. 8.3.1 Linear Low Dropout Regulators (LDOs)
      2. 8.3.2 No-Load Stability
      3. 8.3.3 LDO1 and LDO2 Control Registers
      4. 8.3.4 SW1, SW2: Synchronous Step-Down Magnetic DC-DC Converters
        1. 8.3.4.1  Functional Description
        2. 8.3.4.2  Circuit Operation
        3. 8.3.4.3  PWM Operation
        4. 8.3.4.4  Internal Synchronous Rectification
        5. 8.3.4.5  Current Limiting
        6. 8.3.4.6  SW1, SW2 Operation
        7. 8.3.4.7  SW1, SW2 Control Registers
        8. 8.3.4.8  Shutdown Mode
        9. 8.3.4.9  Soft Start
        10. 8.3.4.10 Low Dropout Operation
        11. 8.3.4.11 Flexible Power Sequencing of Multiple Power Supplies
        12. 8.3.4.12 Power-Up Sequencing Using the EN_T Function
      5. 8.3.5 Flexible Power-On Reset (for example, Power Good with Delay)
      6. 8.3.6 Undervoltage Lockout
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown Mode
    5. 8.5 Programming
      1. 8.5.1 I2C-Compatible Serial Interface
        1. 8.5.1.1 I2C Signals
        2. 8.5.1.2 I2C Data Validity
        3. 8.5.1.3 I2C Start and Stop Conditions
        4. 8.5.1.4 Transferring Data
    6. 8.6 LP8731-Q1 Register Maps
      1. 8.6.1  Interrupt Status Register (ISRA) 0x02
      2. 8.6.2  System Control 1 Register (SCR1) 0x07
      3. 8.6.3  EN_DLY Preset Delay Sequence after EN_T Assertion
      4. 8.6.4  Buck and LDO Output Voltage Enable Register (BKLDOEN) - 0x10
      5. 8.6.5  Buck and LDO Status Register (BKLDOSR) - 0x11
      6. 8.6.6  BUCK Voltage Change Control Register 1 (VCCR) - 0x20
      7. 8.6.7  BUCK1 Target Voltage 1 Register (B1TV1) - 0x23
      8. 8.6.8  BUCK1 Target Voltage 2 Register (B1TV2) - 0x24
      9. 8.6.9  BUCK1 Ramp Control Register (B1RC) - 0x25
      10. 8.6.10 BUCK2 Target 1 Register (B2TV1) - 0x29
      11. 8.6.11 BUCK2 Target 2 Register (B2TV2) - 0x2A
      12. 8.6.12 BUCK2 Ramp Control Register (B2RC) - 0x2B
      13. 8.6.13 BUCK Function Register (BFCR) - 0x38
      14. 8.6.14 Spread Spectrum Function
      15. 8.6.15 LDO1 Control Register (LDO1VCR) - 0x39
      16. 8.6.16 LDO2 Control Register (LDO2VCR) - 0x3A
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Component Selection
          1. 9.2.2.1.1 Inductors for SW1 and SW2
            1. 9.2.2.1.1.1 Method 1:
            2. 9.2.2.1.1.2 Method 2:
          2. 9.2.2.1.2 External Capacitors
        2. 9.2.2.2 LDO Capacitor Selection
          1. 9.2.2.2.1 Input Capacitor
          2. 9.2.2.2.2 Output Capacitor
          3. 9.2.2.2.3 Capacitor Characteristics
          4. 9.2.2.2.4 Input Capacitor Selection for SW1 And SW2
          5. 9.2.2.2.5 Output Capacitor Selection for SW1, SW2
          6. 9.2.2.2.6 I2C Pull-up Resistor
          7. 9.2.2.2.7 Operation Without I2C Interface
        3. 9.2.2.3 Junction Temperature
      3. 9.2.3 Application Curves (LDO)
      4. 9.2.4 Application Curves (BUCK)
  10. 10Power Supply Recommendations
    1. 10.1 Analog Power Signal Routing
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VIN, SDA, SCL −0.3 6 V
GND to GND SLUG ±0.3
Power dissipation (PD_MAX) Internally limited
Junction temperature (TJ-MAX) 150 °C
Maximum lead temperature (soldering) 260
Storage temperature (Tstg ) –65 150
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) ±2000 V
Charged-device model (CDM), per AEC Q100-011 ±750
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

7.3 Recommended Operating Conditions (Bucks)

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VIN 2.8 5.5 V
VEN 0 (VIN + 0.3)
Junction temperature (TJ) –40 125 °C
Ambient temperature (TA) –40 125

7.4 Thermal Information

THERMAL METRIC(1) LP8731-Q1 UNIT
DSBGA (YZR)
25 PINS
RθJA Junction-to-ambient thermal resistance 58.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 0.3
RθJB Junction-to-board thermal resistance 8
ψJT Junction-to-top characterization parameter 0.6
ψJB Junction-to-board characterization parameter 8
RθJC(bot) Junction-to-case (bottom) thermal resistance n/a
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 General Electrical Characteristics

Unless otherwise noted, VIN = 3.6 V. Typical values and limits apply for TJ = 25°C.(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IQ VINLDO12 shutdown current VIN = 3.6 V 3 µA
VPOR Power-on reset threshold VDD Falling Edge(2) 1.9 V
TSD Thermal shutdown threshold 160 °C
TSDH Thermal shutdown hysteresis 20
UVLO Undervoltage lockout Rising 2.9 V
Falling 2.7
(1) All voltages are with respect to the potential at the GND pin.
(2) VPOR is voltage at which the EPROM resets. This is different from the UVLO on VINLDO12, which is the voltage at which the regulators shut off; and is also different from the nPOR function, which signals if the regulators are in a specified range.

7.6 Low Dropout Regulators, LDO1 And LDO2

Unless otherwise noted, VIN = 3.6 V, CIN = 1 µF, COUT = 0.47 µF. Typical values and limits apply for TJ = 25°C.(1)(2)(3)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN Operational voltage range VINLDO1 and VINLDO2 PMOS pins(4) 2.45(5) 5.5(5) V
VOUT Accuracy Output voltage accuracy (default VOUT) Load current = 1 mA −3%(5) 3%(5)
ΔVOUT Line regulation VIN = (VOUT + 0.3 V) to 5 V(6)
Load current = 1 mA
0.2(5) %/V
Load regulation VIN = 3.6 V,
Load current = 1 mA to IMAX
0.011(5) %/mA
ISC Short circuit current limit LDO1 to LDO2, VOUT = 0 V 500 mA
VIN – VOUT Dropout voltage Load current = 50 mA at VOUT = 2.8 V(7) 30 50(5) mV
Load current = 250 mA at VOUT = 2.8 V 150 200(5)
PSRR Power supply ripple rejection ƒ = 10 kHz, Load current = IMAX 45 dB
θn Supply output noise 10 Hz < F < 100 KHz 280 µVrms
IQ(8)(9) Quiescent current “on” IOUT = 0 mA 40 µA
Quiescent current “on” IOUT = IMAX 60 µA
Quiescent current “off” EN is de-asserted(10) 0.03 µA
TON Turn-on time Start-up from shutdown 300 µs
COUT Output capacitance Capacitance for stability 0°C ≤ TJ ≤ 125°C 0.33 0.47 µF
−40°C ≤ TJ ≤ 125°C 0.68 1 µF
ESR 5 500
(1) All voltages are with respect to the potential at the GND pin.
(2) Minimum and Maximum limits are ensured by design, test, or statistical analysis. Typical numbers are not ensured, but do represent the most likely norm.
(3) CIN, COUT: Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.
(4) Pins A1 and/or A5 can operate from VIN min of 1.74 to a VIN max of 5.5 V. This rating is only for the series pass PMOS power FET. It allows the system design to use a lower voltage rating if the input voltage comes from a buck output. However, if VIN is required to operate at a higher voltage than other device supply pins, it is necessary to wire the VINLDO12 pins (B4 an B5) and VINLDO1 and VINLDO2 pins (A1 and/or A5) together to that higher voltage so that the LDO core supply has sufficient head-room to operate the gate of the PMOS.
(5) Limits apply over the entire operating junction temperature range for operation, –40°C to 125°C.
(6) VIN minimum for line regulation values is 1.8 V.
(7) Dropout voltage is the voltage difference between the input and the output at which the output voltage drops to 100 mV below its nominal value.
(8) Quiescent current is defined here as the difference in current between the input voltage source and the load at VOUT.
(9) The IQ can be defined as the standing current of the LP8731-Q1 when the I2C bus is activated and all other power blocks have been disabled via the I2C bus, or it can be defined as the I2C bus active, and the other power blocks are active under no load condition. These two values can be used by the system designer when the LP8731-Q1 is powered using a battery.
(10) The IQ exhibits a higher current draw when the EN pin is de-asserted because the I2C buffer pins draw an additional 2 µA.

7.7 Buck Converters SW1, SW2

Unless otherwise noted, VIN = 3.6 V, CIN = 10 µF, COUT = 10 µF, LOUT = 2.2 µH ceramic. Typical values and limits apply for TJ = 25°C.(1)(2)(3)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VFB Feedback voltage −3%(4) 3%(4)
VOUT Line regulation 2.8 V < VIN < 5.5 V
IOUT = 10 mA
0.089% /V
Load regulation 100 mA < IO < IMAX 0.0013% /mA
Output accuracy(5) VIN = 3.3 V, VOUT from 0.8875 V to 1.1625 V
Load from 0 mA to 600 mA
–2%(4) 2%(4)
Eff Efficiency Load current = 250 mA 90%
ISHDN Shutdown supply current EN is de-asserted 0.01 µA
fOSC Internal oscillator frequency 1.7(4) 2.1 MHz
IPEAK Buck1 peak switching current limit 1.7 A
Buck2 peak switching current limit 1.7
IQ(6) Quiescent current “on” No load PWM Mode 2 mA
RDSON (P) Pin-pin resistance PFET 200
RDSON (N) Pin-pin resistance NFET 180
TON Turn-on time Start-up from shutdown 500 µs
CIN Input capacitance Capacitance for stability 10 µF
CO Output capacitance Capacitance for stability 10 µF
(1) All voltages are with respect to the potential at the GND pin.
(2) Minimum and Maximum limits are ensured by design, test, or statistical analysis. Typical numbers are not ensured, but do represent the most likely norm.
(3) CIN, COUT: Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.
(4) Limits apply over the entire operating junction temperature range for operation, –40°C to 125°C
(5) Based on closed loop, bench test data with LP8731YZREVM.
(6) The IQ can be defined as the standing current of the LP8731-Q1 when the I2C bus is active and all other power blocks have been disabled via the I2C bus, or it can be defined as the I2C bus active, and the other power blocks are active under no load condition. These two values can be used by the system designer when the LP8731-Q1 is powered using a battery.

7.8 I/O Electrical Characteristics

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIL Input low level 0.4(1) V
VIH Input high level 1.2(1)
(1) This specification is ensured by design.

7.9 Power-On Reset Threshold/Function (POR)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
nPOR nPOR = Power-on reset for Buck1 and Buck2 Default 50 µs
nPOR threshold Percentage of target voltage Buck1 or Buck2 VBUCK1 AND VBUCK2 rising 94%
VBUCK1 OR VBUCK2 falling 85%
VOL Output level low Load = IOL = 0.2 mA 0.23 0.5(1) V
(1) This specification is ensured by design.

7.10 I2C-Compatible Interface Timing

Unless otherwise noted, VIN = 3.6 V. Nominal values and limits apply for TJ = 25°C.(1)
MIN NOM MAX UNIT
ƒCLK Clock frequency 400 kHz
tBF Bus-free time between start and stop  See(1) 1.3 µs
tHOLD Hold time repeated start condition  See(1) 0.6 µs
tCLKLP CLK low period  See(1) 1.3 µs
tCLKHP CLK high period  See(1) 0.6 µs
tSU Setup time repeated start condition  See(1) 0.6 µs
tDATAHLD Data hold time  See(1) 0 µs
tDATASU Data setup time  See(1) 100 ns
TSU Setup time for start condition  See(1) 0.6 µs
TTRANS Maximum pulse width of spikes that must be suppressed by the input filter of both DATA & CLK signals  See(1) 50 ns
(1) This specification is ensured by design.

7.11 Typical Characteristics

TA = 25°C unless otherwise noted
30017835.gif
VIN = 3.6 V VOUT = 2.6 V 100-mA load
Figure 1. Output Voltage Change vs. Temperature (LDO1)
tc01_load_trans_1us_LDO_snvsa28.gif
VOUT = 3.6 V ILOAD = 0 to 300 mA
VOUT = 1.8 V Tr = Tf = 1 µs
Figure 3. Load Transient 1-µs Edge Rate
tc03_line_trans_20us_LDO_snvsa28.gif
VIN = 3.6 V to 4.2 V ILOAD = 300 mA
VOUT = 1.8 V Tr = Tf = 20 µs
Figure 5. Line Transient 300-mA, 4-µs Edge Rate
tc07_buck_load_trans_PWM_snvsa28.gif
IOUT = 200 mA to 1.2 A PWM
Figure 7. Buck Load Transient PWM Mode
tc14_buck_line_trans_PWM_snvsa28.gif
VIN Step IOUT = 1.2 A Tr = Tf = 10 µs
Figure 9. Buck Line Transient PWM
30017836.gif
VIN = 3.6 V VOUT = 3.3 V 100-mA load
Figure 2. Output Voltage Change vs. Temperature (LDO2)
tc02_load_trans_4us_LDO_snvsa28.gif
VOUT = 3.6 V ILOAD = 0 to 300 mA
VOUT = 1.8 V Tr = Tf = 4 µs
Figure 4. Load Transient 4-µs Edge Rate
tc04_load_trans_30us_LDO_snvsa28.gif
VIN = 3.6 V to 4.2 V IOUT = 1 mA
VOUT = 1.8 V Tr = Tf = 30 µs
Figure 6. Line Transient 1-mA, 30-µs Edge Rate
tc13_buck_line_trans_PWM_snvsa28.gif
VIN Step IOUT = 300 mA Tr = Tf = 30 µs
Figure 8. Buck Line Transient PWM
tc16_buck_line_trans_PWM_snvsa28.gif
VIN Step IOUT = 1.2 A Tr = Tf = 30 µs
Figure 10. Buck Line Transient PWM