JAJSST5A June   2015  – February 2024 LV14540

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Switching Characteristics
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Fixed Frequency Peak Current Mode Control
      2. 6.3.2  Slope Compensation
      3. 6.3.3  Pulse Skipping Mode
      4. 6.3.4  Low Dropout Operation and Bootstrap Voltage (BOOT)
      5. 6.3.5  Adjustable Output Voltage
      6. 6.3.6  Enable and Adjustable Undervoltage Lockout
      7. 6.3.7  External Soft Start
      8. 6.3.8  Switching Frequency and Synchronization (RT/SYNC)
      9. 6.3.9  Overcurrent and Short-Circuit Protection
      10. 6.3.10 Overvoltage Protection
      11. 6.3.11 Thermal Shutdown
    4. 6.4 Device Functional Modes
      1. 6.4.1 Shutdown Mode
      2. 6.4.2 Active Mode
      3. 6.4.3 CCM Mode
      4. 6.4.4 Light Load Operation
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Output Voltage Set-Point
        2. 7.2.2.2 Switching Frequency
        3. 7.2.2.3 Output Inductor Selection
        4. 7.2.2.4 Output Capacitor Selection
        5. 7.2.2.5 Schottky Diode Selection
        6. 7.2.2.6 Input Capacitor Selection
        7. 7.2.2.7 Bootstrap Capacitor Selection
        8. 7.2.2.8 Soft-start Capacitor Selection
      3. 7.2.3 Application Curves
    3. 7.3 Best Design Practices
    4. 7.4 Power Supply Recommendations
    5. 7.5 Layout
      1. 7.5.1 Layout Guidelines
      2. 7.5.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Documentation Support
      1. 8.1.1 Related Documentation
    2. 8.2 ドキュメントの更新通知を受け取る方法
    3. 8.3 サポート・リソース
    4. 8.4 Trademarks
    5. 8.5 静電気放電に関する注意事項
    6. 8.6 用語集
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Output Capacitor Selection

The output capacitors, COUT, must be chosen with care because the output capacitors directly affects the steady state output voltage ripple, loop stability, and the voltage over/undershoot during load current transients.

The output ripple is essentially composed of two parts. One is caused by the inductor current ripple going through the Equivalent Series Resistance (ESR) of the output capacitors:

Equation 11. GUID-4175B7EC-62D7-43D9-920D-A66385BE15DA-low.gif

The other is caused by the inductor current ripple charging and discharging the output capacitors:

Equation 12. GUID-5C61E371-6BEE-4F26-AB73-4BB83237B97E-low.gif

The two components in the voltage ripple are not in phase, so the actual peak-to-peak ripple is smaller than the sum of two peaks.

Output capacitance is usually limited by transient performance specifications if the system requires tight voltage regulation with presence of large current steps and fast slew rate. When a fast large load increase happens, output capacitors provide the required charge before the inductor current can slew up to the appropriate level. The control loop of the regulator usually needs three or more clock cycles to respond to the output voltage droop. The output capacitance must be large enough to supply the current difference for three clock cycles to maintain the output voltage within the specified range. Equation 13 shows the minimum output capacitance needed for specified output undershoot. When a sudden large load decrease happens, the output capacitors absorb energy stored in the inductor. The catch diode cannot sink current so the energy stored in the inductor results in an output voltage overshoot. Equation 14 calculates the minimum capacitance required to keep the voltage overshoot within a specified range.

Equation 13. GUID-9BE06BEC-DC00-476F-8ED0-B461B2390C70-low.gif
Equation 14. GUID-3F02CA6B-2626-4A85-B25B-95552EF145E7-low.gif

where

  • KIND = Ripple ratio of the inductor ripple current (ΔiL / IOUT)
  • IOL = Low level output current during load transient
  • IOH = High level output current during load transient
  • VUS = Target output voltage undershoot
  • VOS = Target output voltage overshoot

For this design example, the target output ripple is 50 mV. Assume ΔVOUT_ESR = ΔVOUT_C = 50 mV, and choose KIND = 0.4. Equation 11 yields ESR no larger than 25 mΩ and Equation 12 yields COUT no smaller than 16.7 μF. For the target overshoot and undershoot range of this design, VUS = VOS = 5% × VOUT = 250 mV. The COUT can be calculated to be no smaller than 180 μF and 79.2 μF by Equation 13 and Equation 14, respectively. In summary, the most stringent criteria for the output capacitor is 180 μF. Four 47 μF, 16 V, X7R ceramic capacitors with 5 mΩ ESR are used in parallel.