JAJSCD6E August 2016 – June 2021 MSP430FR2000 , MSP430FR2100 , MSP430FR2110 , MSP430FR2111
PRODUCTION DATA
As with any high-resolution ADC, appropriate printed-circuit-board layout and grounding techniques should be followed to eliminate ground loops, unwanted parasitic effects, and noise.
Ground loops are formed when return current from the ADC flows through paths that are common with other analog or digital circuitry. If care is not taken, this current can generate small unwanted offset voltages that can add to or subtract from the reference or input voltages of the ADC. The general guidelines in GUID-8B0C5D14-CE40-4119-A2B1-EE8132C0B600.html#GUID-8B0C5D14-CE40-4119-A2B1-EE8132C0B600 combined with the connections shown in GUID-D243100A-3AC8-42EF-80EB-727B1D4E7BD8.html#GUID-D243100A-3AC8-42EF-80EB-727B1D4E7BD8 prevent this.
In addition to grounding, ripple and noise spikes on the power-supply lines that are caused by digital switching or switching power supplies can corrupt the conversion result. TI recommends a noise-free design using separate analog and digital ground planes with a single-point connection to achieve high accuracy.
GUID-D243100A-3AC8-42EF-80EB-727B1D4E7BD8.html#SLASE787339 shows the recommended decoupling circuit when an external voltage reference is used. The internal reference module has a maximum drive current as described in the sections ADC Pin Enable and 1.2-V Reference Settings of the MSP430FR4xx and MSP430FR2xx Family User's Guide.
The reference voltage must be a stable voltage for accurate measurements. The capacitor values that are selected in the general guidelines filter out the high- and low-frequency ripple before the reference voltage enters the device. In this case, the 10-µF capacitor buffers the reference pin and filters low-frequency ripple. A 100-nF bypass capacitor filters out high-frequency noise.