JAJSFD0C September   2014  – March 2021

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Functional Block Diagram
  5. Revision History
  6. Device Comparison
    1. 6.1 Related Products
  7. Terminal Configuration and Functions
    1. 7.1 Pin Diagrams
    2. 7.2 Signal Descriptions
    3. 7.3 Pin Multiplexing
    4. 7.4 Connection of Unused Pins
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Active Mode Supply Current (Into VCC) Excluding External Current
    5. 8.5 Low-Power Mode Supply Currents (Into VCC) Excluding External Current
    6. 8.6 Thermal Resistance Characteristics
    7. 8.7 Timing and Switching Characteristics
      1. 8.7.1  Reset Timing
        1. 8.7.1.1 Reset Timing
      2. 8.7.2  Clock Specifications
        1. 8.7.2.1 DCO in External Resistor Mode
        2. 8.7.2.2 DCO in Internal Resistor Mode
        3. 8.7.2.3 DCO Overall Tolerance Table
        4. 8.7.2.4 DCO in Bypass Mode Recommended Operating Conditions
      3. 8.7.3  Wake-up Characteristics
        1. 8.7.3.1 Wake-up Times From Low Power Modes
      4. 8.7.4  I/O Ports
        1. 8.7.4.1 Schmitt-Trigger Inputs – General-Purpose I/O
        2. 8.7.4.2 Inputs – Ports P1 and P2
        3. 8.7.4.3 Leakage Current – General-Purpose I/O
        4. 8.7.4.4 Outputs – General-Purpose I/O
        5. 8.7.4.5 Output Frequency – General-Purpose I/O
        6. 8.7.4.6 Typical Characteristics – Outputs
      5. 8.7.5  Power Management Module
        1. 8.7.5.1 PMM, High-Side Brownout Reset (BORH)
        2. 8.7.5.2 PMM, Low-Side SVS (SVSL)
        3. 8.7.5.3 PMM, Core Voltage
        4. 8.7.5.4 PMM, Voltage Monitor (VMON)
      6. 8.7.6  Reference Module
        1. 8.7.6.1 Voltage Reference (REF)
        2. 8.7.6.2 Temperature Sensor
      7. 8.7.7  SD24
        1. 8.7.7.1 SD24 Power Supply and Recommended Operating Conditions
        2. 8.7.7.2 SD24 Internal Voltage Reference
        3. 8.7.7.3 SD24 External Voltage Reference
        4. 8.7.7.4 SD24 Input Range
        5. 8.7.7.5 SD24 Performance, Internal Reference (SD24REFS = 1, SD24OSRx = 256)
        6. 8.7.7.6 SD24 Performance, External Reference (SD24REFS = 0, SD24OSRx = 256)
        7. 8.7.7.7 Typical Characteristics
      8. 8.7.8  eUSCI
        1. 8.7.8.1 eUSCI (UART Mode) Clock Frequency
        2. 8.7.8.2 eUSCI (UART Mode) Deglitch Characteristics
        3. 8.7.8.3 eUSCI (SPI Master Mode) Clock Frequency
        4. 8.7.8.4 eUSCI (SPI Master Mode) Timing
        5. 8.7.8.5 eUSCI (SPI Slave Mode) Timing
        6. 8.7.8.6 eUSCI (I2C Mode) Timing
      9. 8.7.9  Timer_A
        1. 8.7.9.1 Timer_A
      10. 8.7.10 Flash
        1. 8.7.10.1 Flash Memory
      11. 8.7.11 Emulation and Debug
        1. 8.7.11.1 JTAG and Spy-Bi-Wire Interface
  9. Detailed Description
    1. 9.1  Overview
    2. 9.2  Functional Block Diagrams
    3. 9.3  CPU
    4. 9.4  Instruction Set
    5. 9.5  Operating Modes
    6. 9.6  Interrupt Vector Addresses
    7. 9.7  Special Function Registers
    8. 9.8  Flash Memory
    9. 9.9  JTAG Operation
      1. 9.9.1 JTAG Standard Interface
      2. 9.9.2 Spy-Bi-Wire Interface
      3. 9.9.3 JTAG Disable Register
    10. 9.10 Peripherals
      1. 9.10.1 Clock System
      2. 9.10.2 Power-Management Module (PMM)
      3. 9.10.3 Digital I/O
      4. 9.10.4 Watchdog Timer (WDT)
      5. 9.10.5 Timer TA0
      6. 9.10.6 Timer TA1
      7. 9.10.7 Enhanced Universal Serial Communication Interface (eUSCI)
      8. 9.10.8 Hardware Multiplier
      9. 9.10.9 SD24
    11. 9.11 Input/Output Diagrams
      1. 9.11.1 Port P1, P1.0 to P1.3, Input/Output With Schmitt Trigger
      2. 9.11.2 Port P1, P1.4 to P1.7, Input/Output With Schmitt Trigger
      3. 9.11.3 Port P2, P2.0 to P2.2 and P2.4 to P2.7, Input/Output With Schmitt Trigger
      4. 9.11.4 Port P2, P2.3, Input/Output With Schmitt Trigger
    12. 9.12 Device Descriptor
    13. 9.13 Memory
      1. 9.13.1 Peripheral File Map
    14. 9.14 Identification
      1. 9.14.1 Device Identification
      2. 9.14.2 JTAG Identification
  10. 10Applications, Implementation, and Layout
  11. 11Device and Documentation Support
    1. 11.1 Getting Started and Next Steps
    2. 11.2 Device Nomenclature
    3. 11.3 Tools and Software
    4. 11.4 Documentation Support
    5. 11.5 サポート・リソース
    6. 11.6 Trademarks
    7. 11.7 静電気放電に関する注意事項
    8. 11.8 用語集
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Applications, Implementation, and Layout

Note:

以下のアプリケーション情報は、TI の製品仕様に含まれるものではなく、TI ではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。また、お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

The following resources provide application guidelines and best practices when designing with the MSP430i20xx devices.

Implementation of a One- or Two-Phase Electronic Watt-Hour Meter Using MSP430i20xx application report

This application report describes the implementation of a low-cost 1- or 2-phase electronic electricity meter that uses the TI MSP430i20xx metering processor. This application report includes information on metrology software and hardware procedures for this single-chip implementation.

Single-Phase and DC Embedded Metering Power Using MSP430i2040 application report

This application report describes an EVM that uses the MSP430i2040 microcontroller for embedded metering (submetering). In this application, the electricity measuring device is embedded in the end application and gives the user information about the voltage, current, and power consumption of the device. In addition, the EVM can compensate for line resistance and EMI filter capacitance.

Single Phase and DC Embedded Metering (Server Power Monitor) reference design

This reference design implements a high-accuracy single-phase embedded meter using an MSP430 MCU. This EVM has built-in support to measure AC voltage, current, active power, reactive power, apparent power, frequency, power factor, voltage THD, current THD, fundamental voltage, fundamental current, fundamental power and DC voltage, DC current, DC active power. It can detect the input voltage to work in DC or AC mode. It can also compensate for the effects of the wire resistance and the EMI filter capacitance so that the reading of voltage and power matches the reading of an external meter when EMI filter is connected to the input.

Three Output Smart Power Strip reference design

This reference design implements a high-accuracy single-phase embedded metering smart power strip using an MSP430 MCU. This design supports measurement of AC voltage, current, active power, reactive power, apparent power, frequency, and power factor with 3 sockets measured individually. Additional hardware is added to provide futher development like relay control and wired or wireless communication.