JAJSMH3B December   1997  – November 2024 OPA134 , OPA2134 , OPA4134

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information - OPA134
    5. 5.5 Thermal Information - OPA2134
    6. 5.6 Thermal Information - OPA4134
    7. 5.7 Electrical Characteristics
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Feature Description
      1. 6.2.1 Total Harmonic Distortion
      2. 6.2.2 Distortion Measurements
      3. 6.2.3 Source Impedance and Distortion
      4. 6.2.4 Phase Reversal Protection
      5. 6.2.5 Output Current Limit
    3. 6.3 Functional Block Diagram
    4. 6.4 Device Functional Modes
      1. 6.4.1 Noise Performance
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Operating Voltage
      2. 7.1.2 Offset Voltage Trim
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
      3. 7.2.3 Application Curve
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
        1. 8.1.1.1 Analog Filter Designer
        2. 8.1.1.2 TINA-TI™シミュレーション ソフトウェア (無償ダウンロード)
        3. 8.1.1.3 TI のリファレンス・デザイン
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
    3. 8.3 ドキュメントの更新通知を受け取る方法
    4. 8.4 サポート・リソース
    5. 8.5 Trademarks
    6. 8.6 静電気放電に関する注意事項
    7. 8.7 用語集
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Distortion Measurements

The distortion produced by OPAx134 series of operational amplifiers is below the measurement limit of all known commercially-available equipment. However, a special test circuit can extend the measurement capabilities.

Operational amplifier distortion can be considered an internal error source which can be referred to the input. Figure 6-1 shows a circuit which causes the operational amplifier distortion to be 101 times greater than that which the operational amplifier normally produces. The addition of R3 to the otherwise standard non-inverting amplifier configuration alters the feedback factor or noise gain of the circuit. The closed-loop gain is unchanged, but the feedback available for error correction is reduced by a factor of 101, thus extending the resolution by 101. The input signal and load applied to the operational amplifier are the same as with conventional feedback without R3. Keep the value of R3 small to minimize effect on the distortion measurements.

OPA134 OPA2134 OPA4134 Distortion Test Circuit Figure 6-1 Distortion Test Circuit

This technique can be verified by duplicating measurements at high gain or high frequency, where the distortion is within the measurement capability of the test equipment. Measurements for this data sheet were made with an Audio Precision distortion and noise analyzer, which greatly simplifies repetitive measurements. The measurement technique can, however, be performed with manual distortion measurement instruments.