SBOS450C July   2009  – August 2014 OPA1611 , OPA1612

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Handling Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Electrical Characteristics: VS = ±2.25 V to ±18 V
    5. 6.5 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Power Dissipation
      2. 7.3.2 Electrical Overstress
      3. 7.3.3 Operating Voltage
      4. 7.3.4 Input Protection
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Noise Performance
      1. 8.2.1 Detailed Design Procedure
      2. 8.2.2 Application Curve
      3. 8.2.3 Basic Noise Calculations
    3. 8.3 Total Harmonic Distortion Measurements
    4. 8.4 Capacitive Loads
    5. 8.5 Application Circuit
  9. Power-Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Related Links
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage VS = (V+) – (V–) 40 V
Input voltage (V–) – 0.5 (V+) + 0.5 V
Input current (all pins except power-supply pins) ±10 mA
Output short-circuit(2) Continuous
Operating temperature (TA) –55 +125 °C
Junction temperature (TJ) 200 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Short-circuit to VS / 2 (ground in symmetrical dual supply setups), one amplifier per package.

6.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature range –65 +150 °C
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) –3000 3000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) –1000 1000
Machine model (MM) –200 200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Supply voltage (V+ – V–) 4.5 (±2.25) 36 (±18) V
Specified temperature –40 +85 °C

6.4 Electrical Characteristics: VS = ±2.25 V to ±18 V

At TA = +25°C and RL = 2 kΩ, unless otherwise noted. VCM = VOUT = midsupply, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
AUDIO PERFORMANCE
THD+N Total harmonic distortion + noise G = +1, f = 1 kHz, VO = 3 VRMS 0.000015%
–136 dB
IMD Intermodulation distortion SMPTE/DIN two-tone, 4:1 (60 Hz and 7 kHz),
G = +1, VO = 3 VRMS
0.000015%
–136 dB
DIM 30 (3-kHz square wave and 15-kHz sine wave), G = +1, VO = 3 VRMS 0.000012%
–138 dB
CCIF twin-tone (19 kHz and 20 kHz), G = +1,
VO = 3 VRMS
0.000008%
–142 dB
FREQUENCY RESPONSE
GBW Gain-bandwidth product G = 100 80 MHz
G = 1 40 MHz
SR Slew rate G = –1 27 V/μs
Full-power bandwidth(1) VO = 1 VPP 4 MHz
Overload recovery time G = –10 500 ns
Channel separation (dual) f = 1 kHz –130 dB
NOISE
Input voltage noise f = 20 Hz to 20 kHz 1.2 μVPP
en Input voltage noise density(2) f = 10 Hz 2 nV/√Hz
f = 100 Hz 1.5 nV/√Hz
f = 1 kHz 1.1 1.5 nV/√Hz
In Input current noise density f = 10 Hz 3 pA/√Hz
f = 1 kHz 1.7 pA/√Hz
OFFSET VOLTAGE
VOS Input offset voltage VS = ±15 V ±100 ±500 μV
dVOS/dT VOS over temperature(2) TA = –40°C to +85°C 1 4 μV/°C
PSRR Power-supply rejection ratio VS = ±2.25 V to ±18 V 0.1 1 μV/V
INPUT BIAS CURRENT
IB Input bias current VCM = 0 V ±60 ±250 nA
VCM = 0 V, DRG package only ±60 ±300 nA
IB over temperature(2) TA = –40°C to +85°C 350 nA
IOS Input offset current VCM = 0 V ±25 ±175 nA
INPUT VOLTAGE RANGE
VCM Common-mode voltage range (V–) + 2 (V+) – 2 V
CMRR Common-mode rejection ratio (V–) + 2 V ≤ VCM ≤ (V+) – 2 V 110 120 dB
INPUT IMPEDANCE
Differential 20k || 8 Ω || pF
Common-mode 109 || 2 Ω || pF
OPEN-LOOP GAIN
AOL Open-loop voltage gain (V–) + 0.2 V ≤ VO ≤ (V+) – 0.2 V, RL = 10 kΩ 114 130 dB
(V–) + 0.6 V ≤ VO ≤ (V+) – 0.6 V, RL = 2 kΩ 110 114 dB
OUTPUT
VOUT Voltage output RL = 10 kΩ, AOL ≥ 114 dB (V–) + 0.2 (V+) – 0.2 V
RL = 2 kΩ, AOL ≥ 110 dB (V–) + 0.6 (V+) – 0.6 V
IOUT Output current See Figure 27 mA
ZO Open-loop output impedance See Figure 28 Ω
ISC Short-circuit current +55 mA
–62 mA
CLOAD Capacitive load drive See Typical Characteristics pF
POWER SUPPLY
VS Specified voltage ±2.25 ±18 V
IQ Quiescent current (per channel) IOUT = 0 A 3.6 4.5 mA
IQ over Temperature(2) TA = –40°C to +85°C 5.5 mA
TEMPERATURE RANGE
Specified range –40 +85 °C
Operating range –55 +125 °C
θJA Thermal resistance, SOIC-8 150 °C/W
(1) Full-power bandwidth = SR / (2π × VP), where SR = slew rate.
(2) Specified by design and characterization.

6.5 Typical Characteristics

At TA = +25°C, VS = ±15 V, and RL = 2 kΩ, unless otherwise noted.
tc_v_curr_dens_freq_bos450.gif
Figure 1. Input Voltage Noise Density and Input Current Noise Density vs Frequency
tc_vnoise_spec_dens_rs_bos450.gif
Figure 3. Voltage Noise vs Source Resistance
tc_gain_phase_fqcy_bos450.gif
Figure 5. Gain and Phase vs Frequency
tc_thdn_fqcy_01_bos450.gif
Figure 7. THD+N Ratio vs Frequency
tc_thdn_fqcy_03_bos450.gif
Figure 9. THD+N Ratio vs Frequency
tc_thdn_vout_amp_bos450.gif
Figure 11. THD+N Ratio vs Output Amplitude
tc_chan_sep_fqcy_bos450.gif
Figure 13. Channel Separation vs Frequency
tc_sm_signal_step_g1_bos450.gif
Figure 15. Small-Signal Step Response (100 mV)
tc_lg_signal_step_g1_bos450.gif
Figure 17. Large-Signal Step Response
tc_sm_sig_osht_cload_g1_bos450.gif
Figure 19. Small-Signal Overshoot vs Capacitive Load
(100-mV Output Step)
tc_aol_temp_bos450.gif
Figure 21. Open-Loop Gain vs Temperature
tc_ib_ios_vcm_bos450.gif
Figure 23. IB and IOS vs Common-Mode Voltage
tc_iq_vsup_bos450.gif
Figure 25. Quiescent Current vs Supply Voltage
tc_vout_iout_bos450.gif
Figure 27. Output Voltage vs Output Current
tc_noise_bos450.gif
Figure 2. 0.1-Hz to 10-Hz Noise
tc_vout_max_freq_bos450.gif
Figure 4. Maximum Output Voltage vs Frequency
tc_closed_lp_gain_fqcy_bos450.gif
Figure 6. Closed-Loop Gain vs Frequency
tc_thdn_fqcy_02_bos450.gif
Figure 8. THD+N Ratio vs Frequency
tc_thdn_fqcy_04_bos450.gif
Figure 10. THD+N Ratio vs Frequency
tc_imd_amp_bos450.gif
Figure 12. Intermodulation Distortion vs Output Amplitude
tc_cmrr_psrr_freq_bos450.gif
Figure 14. CMRR and PSRR vs Frequency
(Referred to Input)
tc_sm_signal_step_g-1_bos450.gif
Figure 16. Small-Signal Step Response (100 mV)
tc_lg_signal_step_g-1_bos450.gif
Figure 18. Large-Signal Step Response
tc_sm_sig_osht_cload_g-1_bos450.gif
Figure 20. Small-Signal Overshoot vs Capacitive Load
(100-mV Output Step)
tc_ib_ios_temp_bos450.gif
Figure 22. IB and IOS vs Temperature
tc_iq_temp_bos450.gif
Figure 24. Quiescent Current vs Temperature
tc_isc_temp_bos450.gif
Figure 26. Short-Circuit Current vs Temperature
tc_oloop-frq_bos450.gif
Figure 28. Open-Loop Output Impedance vs Frequency