JAJSFG2I December   2013  – May 2018 OPA172 , OPA2172 , OPA4172

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     Device Images
      1.      JFET入力の低ノイズ・アンプ
      2.      優れたTHD性能
  4. 改訂履歴
  5. 概要(続き)
  6. Device Comparison
    1. 6.1 Device Comparison
    2. 6.2 Device Family Comparison
  7. Pin Configuration and Functions
    1.     Pin Functions: OPA172
    2.     Pin Functions: OPA2172 and OPA4172
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information: OPA172
    5. 8.5 Thermal Information: OPA2172
    6. 8.6 Thermal Information: OPA4172
    7. 8.7 Electrical Characteristics
    8. 8.8 Typical Characteristics: Table of Graphs
    9. 8.9 Typical Characteristics
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 EMI Rejection
      2. 9.3.2 Phase-Reversal Protection
      3. 9.3.3 Capacitive Load and Stability
    4. 9.4 Device Functional Modes
      1. 9.4.1 Common-Mode Voltage Range
      2. 9.4.2 Electrical Overstress
      3. 9.4.3 Overload Recovery
  10. 10Applications and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 Capacitive Load Drive Solution Using an Isolation Resistor
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
        3. 10.2.1.3 Application Curve
      2. 10.2.2 Bidirectional Current Source
      3. 10.2.3 JFET-Input Low-Noise Amplifier
  11. 11Power-Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13デバイスおよびドキュメントのサポート
    1. 13.1 デバイス・サポート
      1. 13.1.1 開発サポート
        1. 13.1.1.1 TINA-TI(無料のダウンロード・ソフトウェア)
    2. 13.2 ドキュメントのサポート
      1. 13.2.1 関連資料
    3. 13.3 関連リンク
    4. 13.4 コミュニティ・リソース
    5. 13.5 商標
    6. 13.6 静電気放電に関する注意事項
    7. 13.7 Glossary
  14. 14メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Detailed Design Procedure

Figure 47 depicts a unity-gain buffer driving a capacitive load. Equation 1 shows the transfer function for the circuit in Figure 47. Not depicted in Figure 47 is the open-loop output resistance of the op amp, Ro.

Equation 1. OPA172 OPA2172 OPA4172 ai_refdes_eqn_bos618.gif

The transfer function in Equation 1 has a pole and a zero. The frequency of the pole (fp) is determined by (Ro + RISO) and CLOAD. Components RISO and CLOAD determine the frequency of the zero (fz). A stable system is obtained by selecting RISO such that the rate of closure (ROC) between the open-loop gain (AOL) and 1 / β is 20 dB per decade. Figure 48 shows the concept. Note that the 1 / β curve for a unity-gain buffer is 0 dB.

OPA172 OPA2172 OPA4172 ai_refdes_bodeplot_bos618.gifFigure 48. Unity-Gain Amplifier with RISO Compensation

ROC stability analysis is typically simulated. The validity of the analysis depends on multiple factors, especially the accurate modeling of Ro. In addition to simulating the ROC, a robust stability analysis includes a measurement of overshoot percentage and ac gain peaking of the circuit using a function generator, oscilloscope, and gain and phase analyzer. Phase margin is then calculated from these measurements. Table 4 shows the overshoot percentage and ac gain peaking that correspond to phase margins of 45° and 60°. For more details on this design and other alternative devices that can be used in place of the OPA172, refer to the precision design, Capacitive Load Drive Solution using an Isolation Resistor (TIPD128).

Table 4. Phase Margin versus Overshoot and AC Gain Peaking

PHASE MARGIN OVERSHOOT AC GAIN PEAKING
45° 23.3% 2.35 dB
60° 8.8% 0.28 dB