JAJSFO4B August   2017  – December 2018 OPA2810

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
    1.     マルチチャネル・センサ・インターフェイス
  3. 概要
    1.     高調波歪みと周波数との関係
  4. 改訂履歴
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics: 10 V
    6. 6.6  Electrical Characteristics: 24 V
    7. 6.7  Electrical Characteristics: 5 V
    8. 6.8  Typical Characteristics: VS = 10 V
    9. 6.9  Typical Characteristics: VS = 24 V
    10. 6.10 Typical Characteristics: VS = 5 V
    11. 6.11 Typical Characteristics: ±2.375 V to ±12 V Split Supply
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
      1. 7.2.1 ESD Protection
    3. 7.3 Feature Description
      1. 7.3.1 OPA2810 Comparison
    4. 7.4 Device Functional Modes
      1. 7.4.1 Split-Supply Operation (±2.375 V to ±13.5 V)
      2. 7.4.2 Single-Supply Operation (4.75 V to 27 V)
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Selection of Feedback Resistors
      2. 8.1.2 Noise Analysis and the Effect of Resistor Elements on Total Noise
    2. 8.2 Typical Applications
      1. 8.2.1 Transimpedance Amplifier
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
      2. 8.2.2 Multichannel Sensor Interface
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Thermal Considerations
    2. 10.2 Layout Example
  11. 11デバイスおよびドキュメントのサポート
    1. 11.1 ドキュメントのサポート
      1. 11.1.1 関連資料
    2. 11.2 ドキュメントの更新通知を受け取る方法
    3. 11.3 コミュニティ・リソース
    4. 11.4 商標
    5. 11.5 静電気放電に関する注意事項
    6. 11.6 Glossary
  12. 12メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Noise Analysis and the Effect of Resistor Elements on Total Noise

The OPA2810 provides a low input-referred broadband noise voltage density of 6 nV/√Hz while requiring a low 3.6-mA quiescent supply current. To take full advantage of this low input noise, careful attention to the other possible noise contributors is required. Figure 72 shows the operational amplifier noise analysis model with all the noise terms included. In this model, all the noise terms are taken to be noise voltage or current density terms in nV/√Hz or pA/√Hz.

OPA2810 apps_op_amp_noise_analysis_model.gifFigure 72. Operational Amplifier Noise Analysis Model

The total output spot noise voltage is computed as the square root of the squared contributing terms to the output noise voltage. This computation adds all the contributing noise powers at the output by superposition, then calculates the square root to get back to a spot noise voltage. Figure 72 shows the general form for this output noise voltage using the terms shown in Equation 5.

Equation 5. OPA2810 Eq4_EO_sbos196.gif

Dividing this expression by the noise gain (NG = 1 + RF / RG) shows the equivalent input referred spot noise voltage at the noninverting input; see Equation 6.

Equation 6. OPA2810 Eq5_EN_sbos196.gif

Substituting large resistor values into Equation 6 can quickly dominate the total equivalent input referred noise. A source impedance on the noninverting input of 2-kΩ adds a Johnson voltage noise term equal to that of the amplifier (6 nV/√Hz).

Table 2 compares the noise contributions from the various terms when the OPA2810 is configured in a noninverting gain of 5V/V as Figure 73 shows. Two cases are considered where the resistor values in case 2 are 10x the resistor values in case 1. The total output noise in case 1 is 31.3 nV/√Hz while the noise in case 2 is 49.7 nV/√Hz. The large value resistors in case 2 dilute the benefits of selecting a low noise amplifier like the OPA2810. To minimize total system noise, reduce the size of the resistor values. This increases the amplifiers output load and results in a degradation of distortion performance. The increased loading increases the dynamic power consumption of the amplifier. The circuit designer must make the appropriate tradeoffs to maximize the overall performance of the amplifier to match the system requirements.

OPA2810 noise_example.gifFigure 73. Comparing Noise Contributors for Two Cases With the Amplifier in a Noninverting Gain of 5 V/V

Table 2. Comparing Noise Contributions for the Circuit in Figure 73

Noise Source Output Noise Equation Case1 Case2
Noise Source Value Voltage Noise Contribution (nV/√Hz) Noise Power Contribution (nV2/Hz) Contribution (%) Noise Source Value Voltage Noise Contribution (nV/√Hz) Noise Power Contribution (nV2/Hz) Contribution (%)
Source resistor, RS ERS (1+RF/RG) 1.82 nV/√Hz 9.1 82.81 7.77 5.76 nV/√Hz 28.8 829.44 32.41
Gain resistor, RG ERG (RF/RG) 2.04 nV/√Hz 8.16 66.59 6.24 6.44 nV/√Hz 25.76 663.58 25.93
Feedback resistor, RF ERF 4.07 nV/√Hz 4.07 16.57 1.55 12.87 nV/√Hz 12.87 165.64 6.47
Amplifier voltage noise, ENI ENI (1+RF/RG) 6 nV/√Hz 30 900 84.43 6 nV/√Hz 30 900 35.17
Inverting current noise, IBI IBI (RF||RG) 5 fA/√Hz 5.0E-3 5 fA/√Hz 50E-3
Noninverting current noise, IBN IBNRS (1+RF/RG) 5 fA/√Hz 1.0E-3 5 fA/√Hz 10E-3