JAJSPW7B October   2023  – April 2024 OPA2323 , OPA323 , OPA4323

PRODMIX  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information for Single Channel
    5. 6.5 Thermal Information for Dual Channel
    6. 6.6 Thermal Information for Quad Channel
    7. 6.7 Electrical Characteristics
    8. 6.8 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Operating Voltage
      2. 7.3.2  Rail-to-Rail Input
      3. 7.3.3  Rail-to-Rail Output
      4. 7.3.4  Common-Mode Rejection Ratio (CMRR)
      5. 7.3.5  Capacitive Load and Stability
      6. 7.3.6  Overload Recovery
      7. 7.3.7  EMI Rejection
      8. 7.3.8  ESD and Electrical Overstress
      9. 7.3.9  Input ESD Protection
      10. 7.3.10 Shutdown Function
      11. 7.3.11 Packages with an Exposed Thermal Pad
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 OPAx323 in Low-Side, Current Sensing Application
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 ドキュメントの更新通知を受け取る方法
    3. 9.3 サポート・リソース
    4.     Trademarks
    5. 9.4 静電気放電に関する注意事項
    6. 9.5 用語集
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • DYY|14
  • PW|14
サーマルパッド・メカニカル・データ
発注情報

Typical Characteristics

at TA = 25°C, V+ = 2.75V, V– = –2.75V, RL = 10kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise noted)

GUID-20240213-SS0I-75H7-XDM7-BWNWMBJWKD4H-low.gif
VS = 5.5V VCM = VS / 2 TA = 25°C
No. of devices = 36 Mean = –32µV Sigma = 190µV
Figure 6-1 Input Offset Voltage Distribution Histogram
GUID-20230928-SS0I-VQPW-Q4PK-XVXNVPCQPB5C-low.gif
VS = 5.5V VCM = VS / 2 TA = 25°C
No. of devices = 90 Mean = 1pA Sigma = 2pA
Figure 6-3 Input Bias Current Distribution Histogram
GUID-20230928-SS0I-V3WG-0HF4-4GV5H0MQB4C4-low.gif
VS = 5.5V VCM = VS / 2 TA = 25°C
No. of devices = 45 Mean = –0.1pA Sigma = 1.7pA
Figure 6-5 Input Offset Current Distribution Histogram
GUID-20230928-SS0I-7MVC-BRXM-QWRLPN741DM9-low.gif
VCM = (V–) No. of devices = 45
Figure 6-7 Input Offset Voltage vs Supply Voltage
GUID-20240213-SS0I-JKWB-KNF5-W0RKXDLQLR5X-low.gif
VCM = V– No. of devices = 45
Figure 6-9 Input Offset Voltage vs Temperature
GUID-20240213-SS0I-QQRW-FCC8-CBSDP8DVGBLG-low.gif
V+ = 2.75V, V– = –2.75V TA = –40°C, 85°C and 125°C
(V–) – 0.25V < VCM < (V+) + 0.15V
Figure 6-11 Input Offset Voltage vs Common-Mode
GUID-20240213-SS0I-DPZZ-8CR3-B7XF44PBPRJH-low.gif
V+ = 0.9V, V– = –0.9V TA = –40°C, 85°C and 125°C
(V–) – 0.1V < VCM < (V+) + 0.1V
Figure 6-13 Input Offset Voltage vs Common-Mode
GUID-20240213-SS0I-FRRN-0KTP-D7XXH1RTPJLX-low.gif
VS = 5.5V, VCM = VS/2
Figure 6-15 IOS vs Temperature
GUID-20230928-SS0I-MHBP-MSKC-SVB9G4MJ83RC-low.gif
V+ = 2.5V, V– = –2.5V, VCM = VS/2
Figure 6-17 IOS vs Common-Mode Voltage
GUID-20240213-SS0I-F2WB-1JHH-SVZFP71K0CM3-low.gif
CL = 10pF
Figure 6-19 Open-Loop Gain and Phase vs Frequency
GUID-20240213-SS0I-TFNH-K3NP-W6RVGBLZF27Z-low.gif
CL = 10pF
Figure 6-21 Closed-Loop Gain vs Frequency
GUID-20230928-SS0I-FLBB-WFZB-G60TDF6ZDZBD-low.gif
V+ = 2.75V, V– = –2.75V
Figure 6-23 Output Voltage Swing vs Output Current (Sourcing)
GUID-20240213-SS0I-TPBB-CCSV-N4QJBVQVXKR2-low.gif
V+ = 1.65V, V– = –1.65V
Figure 6-25 Output Voltage Swing vs Output Current (Sourcing)
GUID-20230928-SS0I-CDSQ-1X89-VBVMKF6PPHCL-low.gif
V+ = 0.9V, V– = –0.9V
Figure 6-27 Output Voltage Swing vs Output Current (Sourcing)
GUID-20240213-SS0I-4QBH-FQJB-DNGSXLJKX6JJ-low.gif
Figure 6-29 PSRR+ vs Frequency
GUID-20240213-SS0I-T5HK-66FC-FC0RMWL3DCBS-low.gif
VCM = (V–) VS = 1.8V to 5.5V
Figure 6-31 DC PSRR vs Temperature
GUID-20240215-SS0I-LMJ2-F2SB-LM8MJWRV93SR-low.gif
VS = 5V (V–) – 0.2V – < VCM < (V+) + 0.15V
Figure 6-33 DC CMRR vs Temperature
GUID-20240213-SS0I-BVNR-DZMS-HDQTN3ZHPDQ4-low.gif
Figure 6-35 Input Voltage Noise Spectral Density
GUID-20240213-SS0I-HSKP-BCRZ-F3QXKVCQ99FR-low.gif
VS = 5V VCM = 2.5V G = –1
BW = 80kHz VOUT = 2VP-P
Figure 6-37 THD + N vs Frequency
GUID-20240213-SS0I-CQGJ-L8QD-JPQSDCF5XRN2-low.gif
VS = 5V VCM = 2.5V G = –10
BW = 80kHz VOUT = 2VP-P
Figure 6-39 THD + N vs Frequency
GUID-20240213-SS0I-XXQX-W3ML-HSKNCPCBV1XG-low.gif
VS = 5V VCM = 2.5V G = –1
BW = 80kHz VOUT = 4VP-P
Figure 6-41 THD + N vs Frequency
GUID-20240213-SS0I-V66S-JRDB-34K38Q5DBLRF-low.gif
VS = 5V VCM = 2.5V G = –10
BW = 80kHz VOUT = 4VP-P
Figure 6-43 THD + N vs Frequency
GUID-20240213-SS0I-CQNL-Z751-WFP3SVV71PS6-low.gif
VS = 5V VCM = 2.5V G = –1
BW = 80kHz VOUT = 1.4VP-P
Figure 6-45 THD + N vs Frequency
GUID-20240213-SS0I-1C2F-M4WJ-87K73WFVL9VW-low.gif
VS = 3.3V VCM = 1.65V G = –1
BW = 80kHz VOUT = 1VP-P
Figure 6-47 THD + N vs Frequency
GUID-20240213-SS0I-TTGH-LMMC-3H9WV7JBHF5R-low.gif
VS = 3.3V VCM = 1.65V f = 1kHz
BW = 80kHz
Figure 6-49 THD + N vs Amplitude
GUID-20240213-SS0I-2K8X-JMPD-3XZCNLGQKX0J-low.gif
V+ = 2.75V, V– = –2.75V
Figure 6-51 Quiescent Current vs Common-Mode Voltage
GUID-20240213-SS0I-L8PN-SGRH-PP176XTB8WZK-low.gif
G = 1 VIN = 100mVpp
Figure 6-53 Small Signal Overshoot vs Capacitive Load
GUID-20240213-SS0I-MGPZ-H9JV-GZCPQC4MDLTT-low.gif
Figure 6-55 Phase Margin vs Capacitive Load
GUID-20240213-SS0I-LBCX-KJBR-NVMVS0RNB8C9-low.gif
G = –10 VIN = 600mVPP
Figure 6-57 Overload Recovery
GUID-20240213-SS0I-KRMD-QWMK-S0N9DBC873RF-low.gif
G = 1 VIN = 10mVPP CL = 10pF
Figure 6-59 Small-Signal Step Response
GUID-20240213-SS0I-0C40-M5BV-47LLNMKTT0DX-low.gif
G = –1 VIN = 10mVPP CL = 10pF
Figure 6-61 Small-Signal Step Response
GUID-20240213-SS0I-GVZP-GSJX-MMBG8F5R5NN1-low.gif
G = 1 VIN = 4VPP CL = 10pF
Figure 6-63 Large-Signal Step Response
GUID-20240213-SS0I-BBHB-VH13-7LBKB7VM9BNH-low.gif
G = –1 VIN = 4VPP CL = 10pF
Figure 6-65 Large-Signal Step Response
GUID-20240213-SS0I-3RK0-HZMC-TRRQPD53JNK3-low.gif
Figure 6-67 Maximum Output Voltage vs Frequency
GUID-20240213-SS0I-26BD-JGZB-NVCL8HC5RNQH-low.gif
VS = 1.8V
Figure 6-69 Short-Circuit Current vs Temperature
GUID-20240213-SS0I-MQCD-FHCS-MMMPZ6WQB41T-low.gifFigure 6-71 Channel Separation
GUID-20240213-SS0I-7WFS-CG7B-7F56KXS9FPR7-low.gif
VS = 5.5V VCM = VS / 2 TA = –40°C to +125°C
No. of devices = 36
Mean = 0.28µV/°C Sigma = 0.22µV/°C
Figure 6-2 Input Offset Voltage Drift Distribution Histogram
GUID-20230928-SS0I-TSZD-376W-FWW0VJTS5R94-low.gif
VS = 5.5V VCM = VS / 2 TA = 85°C
No. of devices = 90 Mean = 13pA Sigma = 2pA
Figure 6-4 Input Bias Current Distribution Histogram
GUID-20230928-SS0I-H9LM-K7VQ-KW35MFCP03VJ-low.gif
VS = 5.5V VCM = VS / 2 TA = 85°C
No. of devices = 45 Mean = 1.1pA Sigma = 2.1pA
Figure 6-6 Input Offset Current Distribution Histogram
GUID-20230928-SS0I-4BKK-80K0-8SSLTDTBNJ2N-low.gif
VCM = (V–) TA = –40°C, 85°C and 125°C
Figure 6-8 Input Offset Voltage vs Supply Voltage
GUID-20240213-SS0I-S5JH-GZHT-R4BG2M5KZ6L0-low.gif
V+ = 2.75V, V– = –2.75V No. of devices = 45
(V–) – 0.25V < VCM < (V+) + 0.15V
Figure 6-10 Input Offset Voltage vs Common-Mode
GUID-20240213-SS0I-XHN6-9HPG-QHVZHB0MQJTX-low.gif
V+ = 0.9V, V– = –0.9V No. of devices = 45
(V–) – 0.1V < VCM < (V+) + 0.1V
Figure 6-12 Input Offset Voltage vs Common-Mode
GUID-20240213-SS0I-SJ0L-CPJW-KQXFVMLFB7KC-low.gif
VS = 5.5V, VCM = VS/2
Figure 6-14 IB vs Temperature
GUID-20230928-SS0I-VMG4-4LRH-2QZGKCQ0V52K-low.gif
V+ = 2.5V, V– = –2.5V, VCM = VS/2
Figure 6-16 IB vs Common-Mode Voltage
GUID-20240213-SS0I-XBQW-BV8K-WG5CP99LTNMQ-low.gif
Figure 6-18 Open-Loop Gain vs Temperature
GUID-20240213-SS0I-RM86-DMZ3-HPVJCG6MBF6C-low.gifFigure 6-20 Open-Loop Output Impedance vs Frequency
GUID-20240213-SS0I-VQ1C-ZXZV-PSLMFTB5BZXH-low.gif
G = 1000 CL = 10pF
Figure 6-22 Closed-Loop Gain vs Frequency
GUID-20230928-SS0I-MPD5-WQRL-ZSHQN5SLVHB2-low.gif
V+ = 2.75V, V– = –2.75V
Figure 6-24 Output Voltage Swing vs Output Current (Sinking)
GUID-20240213-SS0I-LXLZ-KHNJ-6V2T0GFBFP7N-low.gif
V+ = 1.65V, V– = –1.65V
Figure 6-26 Output Voltage Swing vs Output Current (Sinking)
GUID-20230928-SS0I-VNRP-QXGS-HC5HWTRCV2BM-low.gif
V+ = 0.9V, V– = –0.9V
Figure 6-28 Output Voltage Swing vs Output Current (Sinking)
GUID-20240213-SS0I-ZV3D-QZCD-1QTLRXRMJNTZ-low.gif
Figure 6-30 PSRR– vs Frequency
GUID-20240213-SS0I-SZWM-6ZH2-J6VLLP8954GG-low.gifFigure 6-32 CMRR vs Frequency
GUID-20240213-SS0I-J4MS-RQK7-GMFTJMGBLSWP-low.gif
Figure 6-34 0.1Hz to 10Hz Voltage Noise in Time Domain
GUID-20240213-SS0I-XHH1-DQ1J-2W8GHKRSKZHW-low.gif
VS = 5V VCM = 2.5V G = 1
BW = 80kHz VOUT = 2VP-P
Figure 6-36 THD + N vs Frequency
GUID-20240213-SS0I-MPDN-J9Z4-FDTGNRQKLFCK-low.gif
VS = 5V VCM = 2.5V G = 10
BW = 80kHz VOUT = 2VP-P
Figure 6-38 THD + N vs Frequency
GUID-20240213-SS0I-KRQL-BHVP-XNVHJ4KQGFH5-low.gif
VS = 5V VCM = 2.5V G = 1
BW = 80kHz VOUT = 4VP-P
Figure 6-40 THD + N vs Frequency
GUID-20240213-SS0I-NTZF-MFZZ-6GDNKDTVQN5S-low.gif
VS = 5V VCM = 2.5V G = 10
BW = 80kHz VOUT = 4VP-P
Figure 6-42 THD + N vs Frequency
GUID-20240213-SS0I-3M82-C6N8-BW7MFM1SW8Z0-low.gif
VS = 5V VCM = 2.5V G = 1
BW = 80kHz VOUT = 1.4VP-P
Figure 6-44 THD + N vs Frequency
GUID-20240213-SS0I-PVJQ-NKNS-NXFFW2VGCCRM-low.gif
VS = 3.3V VCM = 1.65V G = 1
BW = 80kHz VOUT = 1VP-P
Figure 6-46 THD + N vs Frequency
GUID-20240213-SS0I-QL0G-NWVH-C9FJBJQV1C5X-low.gif
VS = 5V VCM = 2.5V f = 1kHz
BW = 80kHz
Figure 6-48 THD + N vs Amplitude
GUID-20240213-SS0I-2LM6-DJ9K-0F2JMP6Z9ZLT-low.gif
VCM = VS/2
Figure 6-50 Quiescent Current vs Supply Voltage
GUID-20240213-SS0I-J7WC-8KB0-XTXQ5KBBV9DQ-low.gif
VCM = VS/2
Figure 6-52 Quiescent Current vs Temperature
GUID-20240213-SS0I-SKFS-62N3-H7QRVGKPK3ZX-low.gif
G = 1 VIN = 100mVpp
Figure 6-54 Small Signal Overshoot vs Capacitive Load
GUID-20240213-SS0I-T17W-BGBK-KNJRDLNC7ZFP-low.gif
G = 1 VIN = 6VPP
Figure 6-56 No Phase Reversal
GUID-20240213-SS0I-KRC3-F67V-ZWCTNSGK0QNR-low.gif
G = –10 VIN = 600mVPP
Figure 6-58 Overload Recovery
GUID-20240213-SS0I-KMH5-WNSG-G6LNNVCN1CCS-low.gif
G = 1 VIN = 100mVPP CL = 10pF
Figure 6-60 Small-Signal Step Response
GUID-20240213-SS0I-KMSP-JN8P-PFTL6ZJGLTFL-low.gif
G = –1 VIN = 100mVPP CL = 10pF
Figure 6-62 Small-Signal Step Response
GUID-20240213-SS0I-PGVZ-FZMD-Q2ZPCB5SVHKJ-low.gif
G = 1 VIN = 2VPP CL = 10pF
RL = 2kΩ
Figure 6-64 Large-Signal Step Response
GUID-20240213-SS0I-GBP9-34X1-CGHR9C7T3RDV-low.gif
G = –1 VIN = 2VPP CL = 10pF
RL = 2kΩ
Figure 6-66 Large-Signal Step Response
GUID-20240213-SS0I-7D2H-MS05-SPQB7GGHFVTJ-low.gif
VS = 5.5V
Figure 6-68 Short-Circuit Current vs Temperature
GUID-20240213-SS0I-PLHP-VB8R-0KQ1WQWK82G9-low.gifFigure 6-70 Electromagnetic Interference Rejection Ratio Referred to Noninverting Input (EMIRR+) vs Frequency