JAJSLJ2J January   2011  – March 2021 OPA2836 , OPA836

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information: OPA836
    5. 7.5 Thermal Information: OPA2836
    6. 7.6 Electrical Characteristics: VS = 2.7 V
    7. 7.7 Electrical Characteristics: VS = 5 V
    8. 7.8 Typical Characteristics: VS = 2.7 V
    9. 7.9 Typical Characteristics: VS = 5 V
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagrams
    3. 8.3 Feature Description
      1. 8.3.1 Input Common-Mode Voltage Range
      2. 8.3.2 Output Voltage Range
      3. 8.3.3 Power-Down Operation
      4. 8.3.4 Low-Power Applications and the Effects of Resistor Values on Bandwidth
      5. 8.3.5 Driving Capacitive Loads
    4. 8.4 Device Functional Modes
      1. 8.4.1 Split-Supply Operation (±1.25 V to ±2.75 V)
      2. 8.4.2 Single-Supply Operation (2.5 V to 5.5 V)
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1  Noninverting Amplifier
      2. 9.1.2  Inverting Amplifier
      3. 9.1.3  Instrumentation Amplifier
      4. 9.1.4  Attenuators
      5. 9.1.5  Single-Ended-to-Differential Amplifier
      6. 9.1.6  Differential-to-Signal-Ended Amplifier
      7. 9.1.7  Differential-to-Differential Amplifier
      8. 9.1.8  Gain Setting With OPA836 RUN Integrated Resistors
      9. 9.1.9  Pulse Application With Single-Supply
      10. 9.1.10 ADC Driver Performance
    2. 9.2 Typical Applications
      1. 9.2.1 Audio Frequency Performance
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Active Filters
        1. 9.2.2.1 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
      2. 12.1.2 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 サポート・リソース
    4. 12.4 静電気放電に関する注意事項
    5. 12.5 用語集
    6. 12.6 Trademarks
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Detailed Design Procedure

The OPA836 device is tested in this application in a unity-gain buffer configuration. A buffer configuration is selected for maximum loop gain of the amplifier circuit. At higher closed-loop gains, the loop gain of the circuit reduces, which increases the harmonic distortion. The relationship between distortion and closed-loop gain at a fixed input frequency is shown in Figure 7-36 in Section 7.9. The test was performed under using resistive loads of 300 Ω and 100 KΩ. Figure 7-34 shows the distortion performance of the amplifier versus the resistive load. Output loading, output swing, and closed-loop gain play a key role in determining the distortion performance of the amplifier.

Note:

The 100-pF capacitor to ground on the input helped to decouple noise pickup in the lab and improved noise performance.

The Audio Precision was configured as a single-ended output in this application circuit. In applications where a differential output is available, the OPA836 device can be configured as a differential-to-single-ended amplifier as shown in Figure 9-4. Power-supply bypassing is critical to reject noise from the power supplies. A 2.2-μF supply decoupling capacitor must be placed within 2 inches of the device and can be shared with other operational amplifiers on the same board. A 0.1-μF supply decoupling capacitor must be placed as close to the supply pins as possible, preferably within 0.1 inch. For a split supply, a capacitor is required for both supplies. A 0.1-µF capacitor placed directly between the supplies is also beneficial for improving system noise performance. If the output load is heavy, such as 16 Ω to 32 Ω, performance of the amplifier could begin to degrade. To drive such heavy loads, both channels of the OPA2836 device can be paralleled with their outputs isolated with 1-Ω resistors to reduce the loading effects.