JAJSGH0D november 2018 – october 2020 SN6505A-Q1 , SN6505B-Q1 , SN6505D-Q1
PRODUCTION DATA
The capacitors in the converter circuit in Figure 9-8 are multi-layer ceramic chip (MLCC) capacitors.
As with all high speed CMOS ICs, the device requires a bypass capacitor in the range of 10 nF to 100 nF.
The input bulk capacitor at the center-tap of the primary supports large currents into the primary during the fast switching transients. For minimum ripple make this capacitor 1 μF to 10 μF. In a 2-layer PCB design with a dedicated ground plane, place this capacitor close to the primary center-tap to minimize trace inductance. In a 4-layer board design with low-inductance reference planes for ground and VIN, the capacitor can be placed at the supply entrance of the board. To ensure low-inductance paths use two vias in parallel for each connection to a reference plane or to the primary center-tap.
The bulk capacitor at the rectifier output smooths the output voltage. Make this capacitor 1 μF to 10 μF.
The small capacitor at the regulator input is not necessarily required. However, good analog design practice suggests, using a small value of 47 nF to 100 nF improves the regulator’s transient response and noise rejection.
The LDO output capacitor buffers the regulated output for the subsequent isolator and transceiver circuitry. The choice of output capacitor depends on the LDO stability requirements specified in the data sheet. However, in most cases, a low-ESR ceramic capacitor in the range of 4.7 μF to 10 μF will satisfy these requirements.