SLLS994B February 2010 – July 2015 SN65HVDA1050A-Q1
PRODUCTION DATA.
MIN | MAX | UNIT | ||
---|---|---|---|---|
VCC | Supply voltage(2) | –0.3 | 6 | V |
Voltage at any bus terminal [CANH, CANL, SPLIT (VREF)] | –27 | 40 | V | |
IO | Receiver output current | 20 | mA | |
VI | Voltage input, ISO 7637 transient pulse(3) (CANH, CANL) | –150 | 100 | V |
VI | Voltage input (TXD, S) | –0.3 | 6 | V |
TJ | Junction temperature | –40 | 150 | °C |
Tstg | Storage temperature | –65 | 150 | °C |
VALUE | UNIT | ||||
---|---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human body model (HBM), per AEC Q100-002(1) | Bus pins(2): Pin 7 (CANH) and Pin 6 (CANL) |
±12000 | V |
Pin 5 [SPLIT (VREF)](3) | ±10000 | ||||
All pins | ±4000 | ||||
Charged-device model (CDM), per AEC Q100-011 | ±1500 | ||||
Machine model(4) | ±200 | ||||
IEC 61400-4-2 according to IBEE CAN EMC test specification | Bus pins to GND: Pin 7 (CANH) and Pin 6 (CANL) | ±7000 |
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
VCC | Supply voltage | 4.75 | 5.25 | V | |
VI or VIC | Voltage at any bus terminal (separately or common mode) | –12 | 12 | V | |
VIH | High-level input voltage | TXD, S | 2 | 5.25 | V |
VIL | Low-level input voltage | TXD, S | 0 | 0.8 | V |
VID | Differential input voltage | –6 | 6 | V | |
IOH | High-level output current | Driver | –70 | mA | |
Receiver (RXD) | –2 | ||||
IOL | Low-level output current | Driver | 70 | mA | |
Receiver (RXD) | 2 | ||||
TA | Operating free-air temperature | See Power Dissipation Characteristics | –40 | 125 | °C |
THERMAL METRIC(1) | SN65HVDA1050A-Q1 | UNIT | ||
---|---|---|---|---|
D (SOIC) | ||||
8 PINS | ||||
RθJA | Junction-to-ambient thermal resistance | Low-K thermal resistance(2) | 211 | °C/W |
High-K thermal resistance(2) | 109 | °C/W | ||
RθJC(top) | Junction-to-case (top) thermal resistance | 49.2 | °C/W | |
RθJB | Junction-to-board thermal resistance | 50.3 | °C/W | |
ψJT | Junction-to-top characterization parameter | 8 | °C/W | |
ψJB | Junction-to-board characterization parameter | 49.6 | °C/W | |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | 49.2 | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP(1) | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
SUPPLY | |||||||
ICC | 5-V supply current | Silent mode | S at VCC, VI = VCC | 6 | 10 | mA | |
Dominant | VI = 0 V, 60-Ω load, S = 0 V | 50 | 70 | ||||
Recessive | VI = VCC, No load, S = 0 V | 6 | 10 | ||||
UVCC | Undervoltage reset threshold | 2.8 | 4 | V | |||
DRIVER | |||||||
VO(D) | Bus output voltage (dominant) | CANH | VI = 0 V, S = 0 V, RL = 60 Ω (see Figure 3 and Figure 14) | 2.9 | 3.4 | 4.5 | V |
CANL | 0.8 | 0.85 | 1.2 | 1.5 | |||
VO(R) | Bus output voltage (recessive) | VI = 3 V, S = 0 V, RL = 60 Ω (see Figure 3 and Figure 14) | 2 | 2.3 | 3 | V | |
VOD(D) | Differential output voltage (dominant) | VI = 0 V, RL = 60 Ω, S = 0 V (see Figure 3, Figure 14, and Figure 4) | 1.5 | 3 | V | ||
VI = 0 V, RL = 45 Ω, S = 0 V (see Figure 3, Figure 14, and Figure 4) | 1.4 | 3 | V | ||||
VOD(R) | Differential output voltage (recessive) | VI = 3 V, S = 0 V (see Figure 3 and Figure 14) | –0.012 | 0.012 | V | ||
VI = 3 V, S = 0 V, No Load | –0.5 | 0.05 | |||||
VOC(ss) | Steady-state common-mode output voltage | S = 0 V (see Figure 9) | 2 | 2.3 | 3 | V | |
ΔVOC(ss) | Change in steady-state common-mode output voltage | S = 0 V (see Figure 9) | 30 | mV | |||
VIH | High-level input voltage, TXD input | 2 | V | ||||
VIL | Low-level input voltage, TXD input | 0.8 | V | ||||
IIH | High-level input current, TXD input | VI at VCC | –2 | 2 | µA | ||
IIL | Low-level input current, TXD input | VI at 0 V | –50 | –10 | µA | ||
IO(off) | Power-off TXD output current | VCC at 0 V, TXD at 5 V | 1 | µA | |||
DRIVER (continued) | |||||||
IOS(ss) | Short-circuit steady-state output current, dominant | VCANH = –12 V, CANL open (see Figure 12) | –105 | –72 | mA | ||
VCANH = 12 V, CANL open (see Figure 12) | 0.36 | 1 | |||||
VCANL = –12 V, CANH open (see Figure 12) | –1 | –0.5 | |||||
VCANL = 12 V, CANH open (see Figure 12) | 71 | 105 | |||||
VCANH = 0 V, CANL open, TXD = low, (see Figure 12) |
–100 | –70 | |||||
VCANL = 32 V, CANH open, TXD = low, (see Figure 12 |
75 | 140 | |||||
IOS(ss) | Short-circuit steady-state output current, recessive | –20 V ≤ VCANH ≤ 32 V, CANL open, TXD = high (see Figure 12) |
–15 | 15 | mA | ||
–20 V ≤ VCANL ≤ 32 V, CANH open, TXD = high (see Figure 12) |
–15 | 15 | |||||
CO | Output capacitance | See receiver input capacitance | |||||
RECEIVER | |||||||
VIT+ | Positive-going input threshold voltage | S = 0 V (see Table 1) | 800 | 900 | mV | ||
VIT– | Negative-going input threshold voltage | S = 0 V (see Table 1) | 500 | 650 | mV | ||
Vhys | Hysteresis voltage (VIT+ – VIT–) | 100 | 125 | mV | |||
VOH | High-level output voltage | IO = –2 mA (see Figure 7) | 4 | 4.6 | V | ||
VOL | Low-level output voltage | IO = 2 mA (see Figure 7) | 0.2 | 0.4 | V | ||
II(off) | Power-off bus input current (unpowered bus leakage current) | CANH or CANL = 5 V, Other pin at 0 V, VCC at 0 V, TXD at 0 V |
165 | 250 | µA | ||
IO(off) | Power-off RXD leakage current | VCC at 0 V, RXD at 5 V | 20 | µA | |||
CI | Input capacitance to ground (CANH or CANL) | TXD at 3 V, VI = 0.4 sin (4E6πt) + 2.5 V |
13 | pF | |||
CID | Differential input capacitance | TXD at 3 V, VI = 0.4 sin (4E6πt) | 6 | pF | |||
RID | Differential input resistance | TXD at 3 V, S = 0 V | 30 | 80 | kΩ | ||
RIN | Input resistance (CANH or CANL) | TXD at 3 V, S = 0 V | 15 | 30 | 40 | kΩ | |
RI(m) | Input resistance matching [1 – RIN (CANH) / RIN (CANL))] × 100% |
V(CANH) = V(CANL) | –3% | 0% | 3% | ||
S PIN | |||||||
VIH | High-level input voltage, S input | 2 | V | ||||
VIL | Low-level input voltage, S input | 0.8 | V | ||||
IIH | High level input current | S at 2 V | 20 | 40 | 70 | µA | |
IIL | Low level input current | S at 0.8 V | 5 | 20 | 30 | µA | |
SPLIT (VREF) PIN | |||||||
VO | Output voltage | –50 µA < IO < 50 µA (VREF) | 0.4 VCC | 0.5 VCC | 0.6 VCC | V | |
–500 µA < IO < 500 µA (SPLIT) | 0.3 VCC | 0.5 VCC | 0.7 VCC | ||||
ILKG | Leakage current, unpowered | VCC = 0 V, –12 V ≤ VSPLIT ≤ 12 V | –5 | 5 | µA |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
PD | Average power dissipation | VCC = 5 V, TJ = 27°C, RL = 60 Ω, S = 0 V, Input to TXD at 500 kHz, 50% duty cycle square wave, CL at RXD = 15 pF |
112 | mW | ||
VCC = 5.5 V, TJ = 130°C, RL = 45 Ω, S = 0 V, Input to TXD at 500 kHz, 50% duty cycle square wave, CL at RXD = 15 pF |
170 | |||||
Thermal shutdown temperature | 190 | °C |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
SUPPLY | ||||||
td(LOOP2) | Total loop delay, driver input to receiver output, dominant to recessive | S = 0 V (see Figure 10) | 90 | 230 | ns | |
DEVICE SWITCHING CHARACTERISTICS | ||||||
td(LOOP1) | Total loop delay, driver input to receiver output, recessive to dominant | S = 0 V (see Figure 10) | 90 | 230 | ns | |
td(LOOP2) | Total loop delay, driver input to receiver output, dominant to recessive | S = 0 V (see Figure 10) | 90 | 230 | ns | |
DRIVER SWITCHING CHARACTERISTICS | ||||||
tPLH | Propagation delay time, low-to-high level output | S = 0 V (see Figure 5) | 25 | 65 | 120 | ns |
tPHL | Propagation delay time, high-to-low level output | S = 0 V (see Figure 5) | 25 | 45 | 120 | ns |
tr | Differential output signal rise time | S = 0 V (see Figure 5) | 25 | ns | ||
tf | Differential output signal fall time | S = 0 V (see Figure 5) | 50 | ns | ||
ten | Enable time from silent mode to normal mode and transmission of dominant | See Figure 8 | 1 | µs | ||
t(dom) | Dominant time-out(1) | ↓VI (see Figure 11) | 300 | 450 | 700 | µs |
RECEIVER SWITCHING CHARACTERISTICS | ||||||
tPLH | Propagation delay time, low-to-high-level output | S = 0 V or VCC (see Figure 7) | 60 | 100 | 130 | ns |
tPHL | Propagation delay time, high-to-low-level output | S = 0 V or VCC (see Figure 7) | 45 | 70 | 130 | ns |
tr | Output signal rise time | S = 0 V or VCC (see Figure 7) | 8 | ns | ||
tf | Output signal fall time | S = 0 V or VCC (see Figure 7) | 8 | ns |
S = 0 V | RL = 60 Ω | TXD Input 125 kHz |