SLLSEA8A January   2012  – March 2016 SN65LVCP114

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics (VCC 2.5 V ±5%)
    6. 7.6 Electrical Characteristics (VCC 3.3 V ±5%)
    7. 7.7 Electrical Characteristics (VCC 3.3 V ±5%, 2.5 V ±5%)
    8. 7.8 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1 Test Circuits
    2. 8.2 Equivalent Input and Output Schematic Diagrams
    3. 8.3 Functional Definitions
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Power Down
      2. 9.3.2  Lane Enable
      3. 9.3.3  Gain and Equalization
      4. 9.3.4  VOD
      5. 9.3.5  AGC
      6. 9.3.6  GPIO or I2C Configuration
      7. 9.3.7  Fast Switching
      8. 9.3.8  Power-Down Input Stages
      9. 9.3.9  Disable Output Lanes
      10. 9.3.10 Polarity Switch
    4. 9.4 Device Functional Modes
      1. 9.4.1 Normal Mode
      2. 9.4.2 Loopback
      3. 9.4.3 Diagnostic
    5. 9.5 Programming
      1. 9.5.1 Two-Wire Serial Interface and Control Logic
    6. 9.6 Register Maps
      1. 9.6.1 SN65LVCP114 Register Mapping Information
        1. 9.6.1.1  Register 0x00
        2. 9.6.1.2  Register 0x01
        3. 9.6.1.3  Register 0x02
        4. 9.6.1.4  Register 0x03
        5. 9.6.1.5  Register 0x04
        6. 9.6.1.6  Register 0x06
        7. 9.6.1.7  Register 0x07
        8. 9.6.1.8  Register 0x08
        9. 9.6.1.9  Register 0x0A
        10. 9.6.1.10 Register 0x0B
        11. 9.6.1.11 Register 0x0C
        12. 9.6.1.12 Register 0x0D
        13. 9.6.1.13 Register 0x0F
        14. 9.6.1.14 Register 0x10
        15. 9.6.1.15 Register 0x11
        16. 9.6.1.16 Register 0x12
        17. 9.6.1.17 Register Descriptions
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 Transmit-Side Typical Application
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
        3. 10.2.1.3 Application Curves
      2. 10.2.2 Receive-Side Typical Application
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
        3. 10.2.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documenation
    2. 13.2 Community Resources
    3. 13.3 Trademarks
    4. 13.4 Electrostatic Discharge Caution
    5. 13.5 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VCC Supply voltage range(2) –0.3 4 V
VIN,DIFF Differential voltage between xINx_P and xINx_N ±2.5 V
VIN+,
VIN–
Voltage at xINx_P and xINx_N –0.5 VCC + 0.5 V
VIO Voltage on control I/O pins –0.3 VCC + 0.5 V
IIN+
IIN–
Continuous current at high-speed differential data inputs (differential) –25 25 mA
IOUT+
IOUT–
Continuous current at high-speed differential data outputs –25 25 mA
Tstg Storage temperature –55 125 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)(2) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(3)(4) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2000 V may actually have higher performance.
(2) Tested in accordance with JEDEC Standard 22, Test Method A114-A.
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. Pins listed as ±500 V may actually have higher performance.
(4) Tested in accordance with JEDEC Standard 22, Test Method C101.

7.3 Recommended Operating Conditions

MIN NOM MAX UNIT
Operating data rate, dR 14.2 Gbps
Supply voltage, VCC, 2.5-V nominal supply 2.375 2.5 2.625 V
Supply voltage, VCC, 3.3-V nominal supply 3.135 3.3 3.465 V
PSNR BG, bandgap circuitry PSNR, 10 Hz–10 GHz 20 dB
CONTROL INPUTS
VIH High-level input voltage 0.8 × VCC
VIM Mid-level input voltage VCC/2 – 0.3 VCC/2 + 0.3 V
VIL Low- level input voltage 0.2 × VCC V
TC Junction temperature(1) –10 125 °C
Maximum board temperature(1) See Table 1 °C
(1) Use of θJB and φJB are recommended for thermal calculations. For more information about traditional and new thermal metrics, see IC Package Thermal Metrics application report, SPRA953.

7.4 Thermal Information

THERMAL METRIC(1) SN65LVCC114 UNIT
ZJA (NFBGA)
167 PINS
RθJA Junction-to-ambient thermal resistance 38.8 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 7.55 °C/W
RθJB Junction-to-board thermal resistance 17.8 °C/W
ψJT Junction-to-top characterization parameter 0.2 °C/W
ψJB Junction-to-board characterization parameter 17.5 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics (VCC 2.5 V ±5%)

over operating conditions range. All parameters are referenced to package pins (unless otherwise noted).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
POWER CONSUMPTION
PDL Device power dissipation, loopback mode Ports A, B, and C in loopback mode with all 12 channels active. VOD = LOW 1800 2300 mW
PDN Device power dissipation, normal mode Device configured in mux-demux mode with 8 channels active. VOD = LOW 1400 1800 mW
PDOFF Device power dissipation, lanes disabled All 4 lanes disabled. See the I2C section for device configuration. 50 mW
PDSTB Device power dissipation, standby All 12 channels active, VOD = LOW, FAST_SW = HIGH.
See the I2C section for device configuration.
1800 2300 mW

7.6 Electrical Characteristics (VCC 3.3 V ±5%)

over operating conditions range. All parameters are referenced to package pins (unless otherwise noted).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
POWER CONSUMPTION
PDL Device power dissipation, loopback mode Ports A, B, and C in loopback mode with all 12 channels active. VOD = LOW 2500 3150 mW
PDN Device power dissipation, normal mode Device configured in mux-demux mode with 8 channels active. VOD = LOW 1800 2500 mW
PDOFF Device power dissipation, lanes disabled All 4 lanes disabled. See the I2C section for device configuration. 50 mW
PDSTB Device power dissipation, standby All 12 channels active, VOD = LOW, FAST_SW = HIGH.
See I2C section for device configuration.
2500 3150 mW

7.7 Electrical Characteristics (VCC 3.3 V ±5%, 2.5 V ±5%)

over operating conditions range. All parameters are referenced to package pins (unless otherwise noted).
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
CMOS DC SPECIFICATIONS
IIH High-level input current VIN = 0.9 × VCC 80 µA
IIL Low-level input current VIN = 0.1 × VCC -80 µA
CML INPUTS (AINP[3:0], AINN[3:0], BINP[3:0], BINN[3:0], CINP[3:0], CINN[3:0])
rIN Differential input resistance INx_P to INx_N 100 Ω
VINPP Input linear dynamic range Gain = 0.5 1200 mVpp
VICM Common-mode input voltage Internally biased VCC – 0.3 V
SCD11 Input differential to common-mode conversion 100 MHz to 7.1GHz –25 dB
SDD11 Differential input return loss 100 MHz to 7.1GHz –10 dB
CML OUTPUTS (AOUTP[3:0], AOUTN[3:0], BOUTP[3:0], BOUTN[3:0], COUTP[3:0], COUTN[3:0])
VOD Output linear dynamic range RL = 100 Ω, VOD = High 1200 mVPP
RL = 100 Ω, VOD = Low 600
VOS Output offset voltage RL = 100 Ω, 0 V applied at inputs 20 mVPP
VCM,RIP Common-mode output ripple K28.5 pattern at 14.2 Gbps,
no interconnect loss, VOD = HIGH
10 20 mVRMS
VOD,RIP Differential path output ripple K28.5 pattern at 14.2Gbps, no interconnect loss,
VIN = 1200 mVpp. Outputs squelched.
20 mVPP
VOCM Output common mode voltage See Figure 9 VCC – 0.35 V
VOC(SS) Change in steady-state common-mode output voltage between logic states ±10 mV
tPLH Low-to-high propagation delay See Figure 1 200 ps
tPHL High-to-low propagation delay 200 ps
tSK(O) Inter-pair output skew (2) All outputs terminated with 100 Ω. See Figure 3 50 ps
tSK(PP) Part-to-part skew(3) 100 ps
tR Rise time Input signal with 30-ps rise time, 20% to 80%. See Figure 2 31 ps
tF Fall time Input signal with 30-ps fall time, 20% to 80%. See Figure 2 31 ps
SDD22 Differential output return loss 100 MHz to 7.1 GHz –10 dB
SCC22 Common-mode output return loss 100 MHz to 7.1 GHz –5 dB
tSM Multiplexer switch time Mux to valid output (idle outputs are squelched) 100 ns
tSM1 Mux to valid output (idle outputs are turned off) 10 μs
Chiso Channel-to-channel isolation(4) Frequency at 5.1625 GHz 52.2 dB
Frequency at 7.1 GHz 43.5
OUTNOISE Output referred noise 10 MHz to 7.1 GHz. No other noise source present.
VOD = LOW
1500 µVRMS
10 MHz to 7.1 GHz. No other noise source present.
VOD = HIGH
3000
Vpre Output pre-cursor pre-emphasis Input signal with 3.75-dB pre-cursor and measured on the output signal. See Figure 4. Vpre = 20 log(V3/V2) 5 dB
Vpst Output post-cursor pre-emphasis Input signal with 12-dB post-cursor and measure on the output signal.
See Figure 4. Vpst = 20 log(V1/V2)
14 dB
rOT Single-ended output resistance Single-ended on-chip terminations to VCC, outputs are AC-coupled 50 Ω
rOM Output termination mismatch at 1 MHz SN65LVCP114 EQ1_Drom_llsea8.gif 5%
EQUALIZATION
EQGain At 7.1 GHz input signal Equalization gain, EQ = MAX 10 15 dB
DJ1 TX residual deterministic jitter at 10.3125 Gbps Tx launch amplitude = 0.6 Vpp, EQ = 1.3 dB, VOD and GAIN are high. Test channel = 0". See Figure 11. 0.08 UIp-p
DJ2 TX residual deterministic jitter at 14.2 Gbps Tx launch amplitude = 0.6 Vpp, EQ = 1.3 dB, VOD and GAIN are high. Test channel = 0". See Figure 11. 0.06 UIp-p
DJ3 RX residual deterministic jitter at 10.3125 Gbps Tx launch amplitude = 0.6 Vpp, test channel = 12” (9-dB loss at 5 GHz), EQ = 13.9 dB, VOD and GAIN are high. See Figure 10. 0.04 UIp-p
DJ4 RX residual deterministic Jitter at 14.2 Gbps Tx launch amplitude = 0.6 Vpp, test channel = 8" (9-dB loss at 7 GHz), EQ = 13.9 dB, VOD = LOW and GAIN = HIGH. See Figure 10. 0.08 UIp-p
(1) All typical values are at 25°C and with 2.5-V and 3.3-V supply, unless otherwise noted.
(2) tSK(O) is the magnitude of the time difference between the channels within a Port. For more information, see SN65LVCP114 Guidelines for Skew Compensation, SLLA323.
(3) tSK(PP) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.
(4) All noise sources added.
SN65LVCP114 prop_dly_ip_op_llsea8.gif Figure 1. Propagation Delay, Input to Output
SN65LVCP114 rise_fall_op_llsea8.gif Figure 2. Output Rise and Fall Times
SN65LVCP114 inter_pair_skew_llsea8.gif Figure 3. Output Inter-Pair Skew
SN65LVCP114 Vpre_Vpost_llsea8.gif Figure 4. VPRE and VPOST [The Test Pattern is 1111111100000000 (Eight 1s, Eight 0s)]

7.8 Typical Characteristics

Typical operating condition is at VCC = 2.5 V and TA = 25°C, no interconnect line at the output, and with default device settings (unless otherwise noted).
SN65LVCP114 diff_ip_loss_llsea8.gif Figure 5. Differential Input Return Loss
SN65LVCP114 diff_op_loss_llsea8.gif Figure 7. Differential Output Return Loss
SN65LVCP114 diff_comm_mode_llsea8.gif Figure 6. Differential to Common-Mode Conversion
SN65LVCP114 diff_return_loss_llsea8.gif Figure 8. Common-Mode Output Return Loss