SLLS846C May   2009  – August 2014 SN75LVDS83B

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (Continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 Handling Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Dissipation Ratings
    6. 7.6 Electrical Characteristics
    7. 7.7 Timing Requirements
    8. 7.8 Switching Characteristics
    9. 7.9 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 TTL Input Data
      2. 9.3.2 LVDS Output Data
    4. 9.4 Device Functional Modes
      1. 9.4.1 Input Clock Edge
      2. 9.4.2 Low Power Mode
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Power Up Sequence
        2. 10.2.2.2 Signal Connectivity
        3. 10.2.2.3 PCB Routing
      3. 10.2.3 Application Curve
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 Board Stackup
      2. 12.1.2 Power and Ground Planes
      3. 12.1.3 Traces, Vias, and Other PCB Components
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Trademarks
    2. 13.2 Electrostatic Discharge Caution
    3. 13.3 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

7 Specifications

7.1 Absolute Maximum Ratings(1)

MIN MAX UNIT
Supply voltage range, VCC, IOVCC, LVDSVCC, PLLVCC(2) –0.5 4 V
Voltage range at any output terminal –0.5 VCC + 0.5 V
Voltage range at any input terminal –0.5 IOVCC + 0.5 V
Continuous power dissipation See Dissipation Ratings
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.
(2) All voltages are with respect to the GND terminals.

7.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature range –65 150 °C
V(ESD) Electrostatic discharge Human Body Model (HBM)(1) all pins 5 kV
Charged Device Model (CDM)(2) all pins 500 V
Machine Model (MM)(3) all pins 150
(1) In accordance with JEDEC Standard 22, Test Method A114-A.
(2) In accordance with JEDEC Standard 22, Test Method C101.
(3) In accordance with JEDEC Standard 22, Test Method A115-A.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
PARAMETER MIN NOM MAX UNIT
Supply voltage, VCC 3 3.3 3.6 V
LVDS output Supply voltage, LVDSVCC 3 3.3 3.6
PLL analog supply voltage, PLLVCC 3 3.3 3.6
IO input reference supply voltage, IOVCC 1.62 1.8 / 2.5 / 3.3 3.6
Power supply noise on any VCC terminal 0.1
High-level input voltage, VIH IOVCC = 1.8 V IOVCC/2 + 0.3 V V
IOVCC = 2.5 V IOVCC/2 + 0.4 V
IOVCC = 3.3 V IOVCC/2 + 0.5 V
Low-level input voltage, VIL IOVCC = 1.8 V IOVCC/2 - 0.3 V V
IOVCC = 2.5 V IOVCC/2 - 0.4 V
IOVCC = 3.3 V IOVCC/2 - 0.5 V
Differential load impedance, ZL 90 132 Ω
Operating free-air temperature, TA –10 70 C

7.4 Thermal Information

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS ZQL DGG UNIT
MIN TYP MAX MIN TYP MAX
θJA Junction-to-free-air thermal resistance Low-K JEDEC test board, 1s (single signal layer), no air flow 85 °C/W
High-K JEDEC test board, 2s2p (double signal layer, double buried power plane), no air flow 67.1 63.4
θJC Junction-to-case thermal resistance Cu cold plate measurement process 25.2 15.9 °C/W
θJB Junction-to-board thermal resistance EIA/JESD 51-8 31.0 32.5 °C/W
ψJT Junction-to-top of package EIA/JESD 51-2 0.8 0.4 °C/W
ψJB Junction-to-board EIA/JESD 51-6 30.3 32.2 °C/W
TA Operating ambient temperature range –10 70 –10 70 °C
TJ Virtual junction temperature 0 105 0 105 °C

7.5 Dissipation Ratings

PACKAGE CIRCUIT BOARD MODEL(1) TJA ≤ 25°C DERATING FACTOR(2)
ABOVE TJA = 25°C
TJA = 70°C
POWER RATING
DGG Low-K 1111 mW 12.3 mW/°C 555 mW
ZQL 1034 mW 11.5 mW/°C 517 mW
DGG(3) High-K 1730 mW 19 mW/°C 865 mW
ZQL 2000 mW 22 mW/°C 1000 mW
(1) In accordance with the High-K and Low-K thermal metric definitions of EIA/JESD51-2.
(2) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.
(3) DGG junction to case thermal resistance (θJC) is 15.4°C/W.

7.6 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
VT Input voltage threshold RL = 100Ω, See Figure 7 IOVCC/2 V
|VOD| Differential steady-state output voltage magnitude 250 450 mV
Δ|VOD| Change in the steady-state differential output voltage magnitude between opposite binary states 1 35 mV
VOC(SS) Steady-state common-mode output voltage See Figure 7
tR/F (Dx, CLKin) = 1ns
1.125 1.375 V
VOC(PP) Peak-to-peak common-mode output voltage 35 mV
IIH High-level input current VIH = IOVCC 25 μA
IIL Low-level input current VIL = 0 V ±10 μA
IOS Short-circuit output current VOY = 0 V ±24 mA
VOD = 0 V ±12 mA
IOZ High-impedance state output current VO = 0 V to VCC ±20 μA
Rpdn Input pull-down integrated resistor on all inputs (Dx, CLKSEL, SHTDN, CLKIN) IOVCC = 1.8 V 200
IOVCC = 3.3 V 100
IQ Quiescent current (average) disabled, all inputs at GND;
SHTDN = VIL
2 100 μA
ICC Supply current (average) SHTDN = VIH, RL = 100Ω (5 places), grayscale pattern (Figure 8)
VCC = 3.3 V, fCLK = 75 MHz
I(VCC) + I(PLLVCC) + I(LVDSVCC) 51.9 mA
I(IOVCC) with IOVCC = 3.3 V 0.4
I(IOVCC) with IOVCC = 1.8 V 0.1
SHTDN = VIH, RL = 100Ω (5 places), 50% transition density pattern (Figure 8),
VCC = 3.3 V, fCLK = 75 MHz
I(VCC) + I(PLLVCC) + I(LVDSVCC) 53.3 mA
I(IOVCC) with IOVCC = 3.3 V 0.6
I(IOVCC) with IOVCC = 1.8 V 0.2
SHTDN = VIH, RL = 100Ω (5 places), worst-case pattern (Figure 9),
VCC = 3.6 V, fCLK = 75 MHz
I(VCC) + I(PLLVCC) + I(LVDSVCC) 63.7 mA
I(IOVCC) with IOVCC = 3.3 V 1.3
I(IOVCC) with IOVCC = 1.8 V 0.5
SHTDN = VIH, RL = 100Ω (5 places), worst-case pattern (Figure 9),
fCLK = 100 MHz
I(VCC) + I(PLLVCC) + I(LVDSVCC) 81.6 mA
I(IOVCC) with IOVCC = 3.6 V 1.6
I(IOVCC) with IOVCC = 1.8 V 0.6
SHTDN = VIH, RL = 100Ω (5 places), worst-case pattern (Figure 9),
fCLK = 135 MHz
I(VCC) + I(PLLVCC) + I(LVDSVCC) 102.2 mA
I(IOVCC) with IOVCC = 3.6 V 2.1
I(IOVCC) with IOVCC = 1.8 V 0.8
CI Input capacitance 2 pF
(1) All typical values are at VCC = 3.3 V, TA = 25°C.

7.7 Timing Requirements

PARAMETER MIN MAX UNIT
Input clock period, tc 7.4 100 ns
Input clock modulation with modulation frequency 30 kHz 8%
with modulation frequency 50 kHz 6%
High-level input clock pulse width duration, tw 0.4 tc 0.6 tc ns
Input signal transition time, tt 3 ns
Data set up time, D0 through D27 before CLKIN (See Figure 6) 2 ns
Data hold time, D0 through D27 after CLKIN 0.8 ns
load_seq_lls846.gifFigure 1. Typical SN75LVDS83B Load and Shift Sequences
sch_diag_lls846.gifFigure 2. Equivalent Input and Output Schematic Diagrams

7.8 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
t0 Delay time, CLKOUT↑ after Yn valid (serial bit position 0, equal D1, D9, D20, D5) See Figure 10, tC = 10ns,
|Input clock jitter| < 25ps (2)
-0.1 0 0.1 ns
t1 Delay time, CLKOUT↑ after Yn valid (serial bit position 1, equal D0, D8, D19, D27) 1/7 tc - 0.1 1/7 tc + 0.1 ns
t2 Delay time, CLKOUT↑ after Yn valid (serial bit position 2, equal D7, D18, D26. D23) 2/7 tc - 0.1 2/7 tc + 0.1 ns
t3 Delay time, CLKOUT↑ after Yn valid (serial bit position 3; equal D6, D15, D25, D17) 3/7 tc - 0.1 3/7 tc + 0.1 ns
t4 Delay time, CLKOUT↑ after Yn valid (serial bit position 4, equal D4, D14, D24, D16) 4/7 tc - 0.1 4/7 tc + 0.1 ns
t5 Delay time, CLKOUT↑ after Yn valid (serial bit position 5, equal D3, D13, D22, D11) 5/7 tc - 0.1 5/7 tc + 0.1 ns
t6 Delay time, CLKOUT↑ after Yn valid (serial bit position 6, equal D2, D12, D21, D10) 6/7 tc - 0.1 6/7 tc + 0.1 ns
tc(o) Output clock period tc ns
Δtc(o) Output clock cycle-to-cycle jitter (3) tC = 10ns; clean reference clock, see Figure 11 ±26 ps
tC = 10ns with 0.05UI added noise modulated at 3MHz, see Figure 11 ±44
tC = 7.4ns; clean reference clock, see Figure 11 ±35
tC = 7.4ns with 0.05UI added noise modulated at 3MHz, see Figure 11 ±42
tw High-level output clock pulse duration 4/7 tc ns
tr/f Differential output voltage transition time (tr or tf) See Figure 7 225 500 ps
ten Enable time, SHTDN↑ to phase lock (Yn valid) f(clk) = 135 MHz, See Figure 12 6 µs
tdis Disable time, SHTDN↓ to off-state (CLKOUT high-impedance) f(clk) = 135 MHz, See Figure 13 7 ns
(1) All typical values are at VCC = 3.3 V, TA = 25°C.
(2) |Input clock jitter| is the magnitude of the change in the input clock period.
(3) The output clock cycle-to-cycle jitter is the largest recorded change in the output clock period from one cycle to the next cycle observed over 15,000 cycles.Tektronix TDSJIT3 Jitter Analysis software was used to derive the maximum and minimum jitter value.

7.9 Typical Characteristics

gscale_v_clk_lls846.gifFigure 3. Average Grayscale ICC vs Clock Frequency
typ_prbs_lls846.gifFigure 5. Typical PRBS Output Signal Over One Clock Period
outjit_v_freq_lls846.gifFigure 4. Output Clock Jitter vs Input Clock Jitter