JAJSC93E June   2016  – December 2017 TAS2560

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
  4. 改訂履歴
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics
    6. 7.6  I2C Timing Requirements
    7. 7.7  I2S/LJF/RJF Timing in Master Mode
    8. 7.8  I2S/LJF/RJF Timing in Slave Mode
    9. 7.9  DSP Timing in Master Mode
    10. 7.10 DSP Timing in Slave Mode
    11. 7.11 PDM Timing
    12. 7.12 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  General I2C Operation
      2. 9.3.2  Single-Byte and Multiple-Byte Transfers
      3. 9.3.3  Single-Byte Write
      4. 9.3.4  Multiple-Byte Write and Incremental Multiple-Byte Write
      5. 9.3.5  Single-Byte Read
      6. 9.3.6  Multiple-Byte Read
      7. 9.3.7  PLL
      8. 9.3.8  Clock Distribution
      9. 9.3.9  Clock Error Detection
      10. 9.3.10 Class-D Edge Rate Control
      11. 9.3.11 IV Sense
      12. 9.3.12 Boost Control
      13. 9.3.13 Thermal Fold-back
      14. 9.3.14 Battery Guard AGC
      15. 9.3.15 Configurable Boost Current Limit (ILIM)
      16. 9.3.16 Fault Protection
        1. 9.3.16.1 Speaker Over-Current
        2. 9.3.16.2 Analog Under-Voltage
        3. 9.3.16.3 Die Over-Temperature
        4. 9.3.16.4 Clocking Faults
        5. 9.3.16.5 Brownout
      17. 9.3.17 Spread Spectrum vs Synchronized
      18. 9.3.18 IRQs and Flags
      19. 9.3.19 CRC checksum for I2C
      20. 9.3.20 PurePath Console 3 Software TAS2560 Application
    4. 9.4 Device Functional Modes
      1. 9.4.1 Audio Digital I/O Interface
        1. 9.4.1.1 I2S Mode
        2. 9.4.1.2 DSP Mode
        3. 9.4.1.3 DSP Time Slot Mode
        4. 9.4.1.4 Right-Justified Mode (RJF)
        5. 9.4.1.5 Left-Justified Mode (LJF)
        6. 9.4.1.6 Mono PCM Mode
        7. 9.4.1.7 Stereo Application Example - TDM Mode
      2. 9.4.2 PDM MODE
    5. 9.5 Operational Modes
      1. 9.5.1 Hardware Shutdown
      2. 9.5.2 Software Shutdown
      3. 9.5.3 Low Power Sleep
      4. 9.5.4 Software Reset
      5. 9.5.5 Device Processing Modes
        1. 9.5.5.1 Mode 1 - PCM input playback only
        2. 9.5.5.2 Mode 2 - PCM input playback + PCM IVsense output
        3. 9.5.5.3 Mode 2 96k
        4. 9.5.5.4 Mode 3 - PCM input playback + PDM IVsense output
        5. 9.5.5.5 Mode 4 - PDM input playback only
        6. 9.5.5.6 Mode 5 - PDM input playback + PDM IVsense output
    6. 9.6 Programming
      1. 9.6.1 Device Power Up and Un-mute Sequence 8Ω load
      2. 9.6.2 Device Power Up and Un-mute Sequence 4Ω or 6Ω load
      3. 9.6.3 Mute and Device Power Down Sequence
    7. 9.7 Register Map
      1. 9.7.1  Register Map Summary
        1. 9.7.1.1 Register Summary Table
      2. 9.7.2  PAGE (book=0x00 page=0x00 address=0x00) [reset=0h]
      3. 9.7.3  RESET (book=0x00 page=0x00 address=0x01) [reset=0h]
      4. 9.7.4  MODE (book=0x00 page=0x00 address=0x02) [reset=1h]
      5. 9.7.5  SPK_CTRL (book=0x00 page=0x00 address=0x04) [reset=5Fh]
      6. 9.7.6  PWR_CTRL_2 (book=0x00 page=0x00 address=0x05) [reset=0h]
      7. 9.7.7  PWR_CTRL_1 (book=0x00 page=0x00 address=0x07) [reset=0h]
      8. 9.7.8  RAMP_CTRL (book=0x00 page=0x00 address=0x08) [reset=1h]
      9. 9.7.9  EDGE_ISNS_BOOST (book=0x00 page=0x00 address=0x09) [reset=83h]
      10. 9.7.10 PLL_CLKIN (book=0x00 page=0x00 address=0x0F) [reset=41h]
      11. 9.7.11 PLL_JVAL (book=0x00 page=0x00 address=0x10) [reset=4h]
      12. 9.7.12 PLL_DVAL_1 (book=0x00 page=0x00 address=0x11) [reset=0h]
      13. 9.7.13 PLL_DVAL_2 (book=0x00 page=0x00 address=0x12) [reset=0h]
      14. 9.7.14 ASI_FORMAT (book=0x00 page=0x00 address=0x14) [reset=2h]
      15. 9.7.15 ASI_CHANNEL (book=0x00 page=0x00 address=0x15) [reset=0h]
      16. 9.7.16 ASI_OFFSET_1 (book=0x00 page=0x00 address=0x16) [reset=0h]
      17. 9.7.17 ASI_OFFSET_2 (book=0x00 page=0x00 address=0x17) [reset=0h]
      18. 9.7.18 ASI_CFG_1 (book=0x00 page=0x00 address=0x18) [reset=0h]
      19. 9.7.19 ASI_DIV_SRC (book=0x00 page=0x00 address=0x19) [reset=0h]
      20. 9.7.20 ASI_BDIV (book=0x00 page=0x00 address=0x1A) [reset=1h]
      21. 9.7.21 ASI_WDIV (book=0x00 page=0x00 address=0x1B) [reset=40h]
      22. 9.7.22 PDM_CFG (book=0x00 page=0x00 address=0x1C) [reset=0h]
      23. 9.7.23 PDM_DIV (book=0x00 page=0x00 address=0x1D) [reset=8h]
      24. 9.7.24 DSD_DIV (book=0x00 page=0x00 address=0x1E) [reset=8h]
      25. 9.7.25 CLK_ERR_1 (book=0x00 page=0x00 address=0x21) [reset=3h]
      26. 9.7.26 CLK_ERR_2 (book=0x00 page=0x00 address=0x22) [reset=3Fh]
      27. 9.7.27 IRQ_PIN_CFG (book=0x00 page=0x00 address=0x23) [reset=21h]
      28. 9.7.28 INT_CFG_1 (book=0x00 page=0x00 address=0x24) [reset=0h]
      29. 9.7.29 INT_CFG_2 (book=0x00 page=0x00 address=0x25) [reset=0h]
      30. 9.7.30 INT_DET_1 (book=0x00 page=0x00 address=0x26) [reset=0h]
      31. 9.7.31 INT_DET_2 (book=0x00 page=0x00 address=0x27) [reset=0h]
      32. 9.7.32 STATUS_POWER (book=0x00 page=0x00 address=0x2A) [reset=0h]
      33. 9.7.33 SAR_VBAT_MSB (book=0x00 page=0x00 address=0x2D) [reset=C0h]
      34. 9.7.34 SAR_VBAT_LSB (book=0x00 page=0x00 address=0x2E) [reset=0h]
      35. 9.7.35 DIE_TEMP_SENSOR (book=0x00 page=0x00 address=0x31) [reset=0h]
      36. 9.7.36 LOW_PWR_MODE (book=0x00 page=0x00 address=0x35) [reset=0h]
      37. 9.7.37 PCM_RATE (book=0x00 page=0x00 address=0x36) [reset=32h]
      38. 9.7.38 CLOCK_ERR_CFG_1 (book=0x00 page=0x00 address=0x4F) [reset=0h]
      39. 9.7.39 CLOCK_ERR_CFG_2 (book=0x00 page=0x00 address=0x50) [reset=11h]
      40. 9.7.40 PROTECTION_CFG_1 (book=0x00 page=0x00 address=0x58) [reset=3h]
      41. 9.7.41 CRC_CHECKSUM (book=0x00 page=0x00 address=0x7E) [reset=0h]
      42. 9.7.42 BOOK (book=0x00 page=0x00 address=0x7F) [reset=0h]
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 Design Requirements
        1. 10.2.1.1 Detailed Design Procedure
          1. 10.2.1.1.1 Mono/Stereo Configuration
          2. 10.2.1.1.2 Boost Converter Passive Devices
          3. 10.2.1.1.3 EMI Passive Devices
          4. 10.2.1.1.4 Miscellaneous Passive Devices
      2. 10.2.2 Application Performance Plots
    3. 10.3 Initialization Set Up
  11. 11Power Supply Recommendations
    1. 11.1 Power Supplies
    2. 11.2 Power Supply Sequencing
      1. 11.2.1 Boost Supply Details
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13デバイスおよびドキュメントのサポート
    1. 13.1 ドキュメントのサポート
    2. 13.2 コミュニティ・リソース
    3. 13.3 商標
    4. 13.4 静電気放電に関する注意事項
    5. 13.5 Glossary
  14. 14メカニカル、パッケージ、および注文情報
    1. 14.1 パッケージ寸法

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • YFF|30
サーマルパッド・メカニカル・データ
発注情報

Specifications

Absolute Maximum Ratings

over operating free-air temperature range, TA = 25°C (unless otherwise noted)
MIN MAX UNIT
Battery voltage VBAT –0.3 6 V
Analog supply voltage VDD –0.3 2 V
I/O supply voltage IOVDD –0.3 3.9 V
Boost VBST –0.3 9.2 V
Switching SW –0.7 VBST + 1.8(1) V
Regulator voltage VREG –0.3 VBST + 5 V
Digital input voltage –0.3 IOVDD + 0.3 V
Output continuous total power dissipation See Thermal Information
Storage temperature, Tstg –65 150 °C
Cannot exceed 11 V for greater than 10 nS or 10 V continuously.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2500 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1500
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range, TA = 25°C (unless otherwise noted)
MIN NOM MAX UNIT
Battery voltage VBAT 2.9(1) 3.6 5.5 V
Analog supply voltage VDD 1.65 1.8 1.95 V
I/O supply voltage 1.8V IOVDD 1.62 1.8 1.98 V
I/O supply voltage 3.3V IOVDD 3 3.3 3.6 V
TA Operating free-air temperature –40 85 °C
TJ Operating junction temperature –40 150 °C
Device is functional down to 2.7 V. See Battery Guard AGC

Thermal Information

THERMAL METRIC(1) TAS2560 UNIT
30 PINS
RθJA Junction-to-ambient thermal resistance 56.8 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 0.2
RθJB Junction-to-board thermal resistance 8.1
ψJT Junction-to-top characterization parameter 1.2
ψJB Junction-to-board characterization parameter 8.1
RθJC(bot) Junction-to-case (bottom) thermal resistance n/a
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics

VBAT = 3.6 V, VDD = IOVDD = 1.8 V, RESETZ = IOVDD, Gain = 16.4 dB, ERC = 14 ns, Boost Inductor = 2.2 µH, RL = 8 Ω + 33 µH, 1-kHz input frequency, 48-kHz sample rate for digital input, Class-H Boost Enabled, TA= 25°C, ILIM = 3 A (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
BOOST CONVERTER
Boost output voltage Average voltage (w/o including ripple). 8.5 V
Boost converter switching frequency 1.77 MHz
Boost converter current limit 3 A
Boost converter max in-rush current High Efficiency Mode: Max inductor in-rush and startup current after enable 4 A
Normal Efficiency Mode: Max inductor in-rush and startup current after enable 1.5
CLASS-D CHANNEL
Output voltage for full-scale digital input 6.67 VRMS
Load resistance (Load spec resistance) 3.6 8 Ω
Class-D frequency Avg frequency in spread-spectrum mode 384 kHz
Fixed Frequency 44.1 × 8 48 × 8
Class-D + boost efficiency POUT = 3.5 W (sinewave) ROM Mode 1 81%
POUT = 0.44 W (sinewave) ROM Mode 1 87%
Class-D output current limit (Short circuit protection) VBOOST = 8.5 V, OUT– shorted to VBAT, VBOOST, GND 4 A
Class-D output offset voltage in digital input mode –2.5 2.5 mV
Programmable channel gain accuracy ±0.5 dB
Mute attenuation Device in shutdown or device in normal operation and MUTED 146 dB
VBAT Power Supply Rejection Ratio (PSRR) Ripple of 200 mVpp at 217 Hz 110 dB
AVDD Power Supply Rejection Ratio (PSRR) Ripple of 200 mVpp at 217 Hz 98 dB
THD+N 1 kHz, POUT = 0.1 W 0.0085%
1 kHz, Po = 0.5 W 0.0046%
1 kHz, Po = 1 W 0.0035%
1 kHz, Po = 3 W 0.0043%
Output integrated noise (20 Hz to 20 kHz) - 8 Ω A-wt Filter, DAC modulator switching 16.2 µV
Signal-to-noise ratio Referenced to 1% THD+N at output, a-weighted 110.6 dB
Max output power, 3-A current limit THD+N = 1%, 8-Ω Load 3.7 W
THD+N = 1%, 6-Ω Load 4.5
THD+N = 1%, 4-Ω Load 5
Startup pop Digital input, a-weighted output 5 mV
Output impedance in shutdown RESETZ = 0 V 10.4
Startup time Time taken from end of configuring device to speaker output signal in I2C mode with 48ksps input 8 mS
Shutdown time Measured from time when device is programmed in software shutdown mode 100 µS
CURRENT SENSE
Current sense full scale Peak current which will give full scale digital output 8-Ω load 1.25 APEAK
Peak current which will give full scale digital output 8-Ω load PDM 4.022
Peak current which will give full scale digital output 6-Ω load 1.5
Peak current which will give full scale digital output 4-Ω load 1.75
Current sense accuracy IOUT = 354 mARMS (1 W) 1.7%
Current sense gain drift over temperature –40°C to 85°C 4%
Current sense gain linearity From 15 mW to 3.5 W for fin=1 kHz 1.5%
THD+N Distortion + Noise POUT = 3 W (Load = 8 Ω + 33 µH) 0.196%
POUT = 3 W (Load = 4 Ω + 33 µH) 0.132%
SNR 20 Hz to 20 kHz, A-wt –68 db
VOLTAGE SENSE
Voltage sense full scale Peak voltage which will give full scale digital output(1) 9.353 VPEAK
Peak voltage which will give full scale digital output in PDM 16.65
Voltage sense accuracy VOUT = 2.83 Vrms (1 W) 1%
Voltage sense gain drift over temperature –40°C to 85°C 1.2%
Voltage sense gain linearity From 15 mW to 3.5 W for fin = 1 kHz 1%
INTERFACE
Voltage and current sense data rate TDM/I2S 48 kHz
Voltage and current sense ADC OSR TDM/I2S 64 OSR
FMCLK MCLK frequency 0.512 49.15 MHz
POWER CONSUMPTION
Power consumption with digital input and IV-sense disabled. Idle channel condition From VBAT, no signal 3.2 mA
From VDD, no signal 9.5 mA
Power consumption with digital input and IV-sense enabled. From VBAT, no signal 3.2 mA
From VDD, no signal 10.6 mA
Power consumption in hardware shutdown From VBAT, RESETZ = 0 0.1 µA
From VDD, RESETZ = 0 1.2 µA
Power consumption in software shutdown. See Low Power Sleep From VBAT 0.1 µA
From VDD 9.8 µA
DIGITAL INPUT / OUTPUT
VIH High-level digital input voltage All digital pins except SDA and SCL, IOVDD = 1.8-V operation 0.65 × IOVDD V
VIL Low-level digital input voltage 0.35 × IOVDD V
VIH High-level digital input voltage All digital pins except SDA and SCL, IOVDD = 3.3-V operation 2 V
VIL Low-level digital input voltage 0.45 V
VOH High-level digital output voltage All digital pins except SDA and SCL, IOVDD = 1.8-V operation For IOL = 2 mA and IOH = –2 mA IOVDD – 0.45 V
VOL Low-level digital output voltage 0.45 V
VOH High-level digital output voltage All digital pins except SDA and SCL, IOVDD = 3.3-V operation For IOL = 2 mA and IOH = –2 mA 2.4 V
VOL Low-level digital output voltage 0.4 V
IIH High-level digital input leakage current Input = IOVDD –5 0.1 5 µA
IIL Low-level digital input leakage current Input = Ground –5 0.1 5 µA
MISCELLANEOUS
TTRIP Thermal Trip Point 135 °C
Voltage Sense Fullscale = 1.176 Vrms × 10(DAC_GAIN/20)

I2C Timing Requirements

For I2C interface signals over recommended operating conditions (unless otherwise noted).(1)
PARAMETER TEST CONDITION Standard-Mode Fast-Mode UNITS
MIN TYP MAX MIN TYP MAX
fSCL SCL clock frequency 0 100 0 400 kHz
tHD;STA Hold time (repeated) START condition. After this period, the first clock pulse is generated. 4 0.6 μs
tLOW LOW period of the SCL clock 4.7 1.3 μs
tHIGH HIGH period of the SCL clock 4 0.6 μs
tSU;STA Setup time for a repeated START condition 4.7 0.6 μs
tHD;DAT Data hold time: For I2C bus devices 0 3.45 0 0.9 μs
tSU;DAT Data set-up time 250 100 ns
tr SDA and SCL Rise Time 1000 20 + 0.1 × Cb 300 ns
tf SDA and SCL Fall Time 300 20 + 0.1 × Cb 300 ns
tSU;STO Set-up time for STOP condition 4 0.6 μs
tBUF Bus free time between a STOP and START condition 4.7 1.3 μs
Cb Capacitive load for each bus line 400 400 pF
All timing specifications are specified by design but not tested at final test.

I2S/LJF/RJF Timing in Master Mode

All specifications at TA = –40°C to 85°C, IOVDD data sheet limits, VIL and VIH applied, VOL and VOH measured at datasheet limits, lumped capacitive load of 20 pF on output pins unless otherwise noted.(1)
SYMBOL PARAMETER CONDITIONS IOVDD = 1.8 V IOVDD = 3.3 V UNIT
MIN MAX MIN MAX
td(WS) BCLK to WCLK delay 50% of BCLK to 50% of WCLK 35 25 ns
td(DO-WS) WCLK to DOUT delay (For LJF Mode only) 50% of WCLK to 50% of DOUT 35 25 ns
td(DO-BCLK) BCLK to DOUT delay 50% of BCLK to 50% of DOUT 35 25 ns
ts(DI) DIN setup 8 8 ns
th(DI) DIN hold 8 8 ns
tr Rise time 10%-90% Rise Time 8 4 ns
tf Fall time 90%-10% Fall Time 8 4 ns
All timing specifications are measured at characterization but not tested at final test.

I2S/LJF/RJF Timing in Slave Mode

All specifications at TA = –40°C to 85°C, IOVDD data sheet limits, VIL and VIH applied, VOL and VOH measured at datasheet limits, lumped capacitive load of 20 pF on output pins unless otherwise noted.(1)
SYMBOL PARAMETER CONDITIONS IOVDD = 1.8 V IOVDD = 3.3 V UNIT
MIN MAX MIN MAX
tH(BCLK) BCLK high period 40 30 ns
tL(BCLK) BCLK low period 40 30 ns
ts(WS) (WS) 8 8 ns
th(WS) WCLK hold 8 8 ns
td(DO-WS) WCLK to DOUT delay (For LJF Mode only) 50% of WCLK to 50% of DOUT 35 25 ns
td(DO-BCLK) BCLK to DOUT delay 50% of BCLK to 50% of DOUT 35 25 ns
ts(DI) DIN setup 8 8 ns
th(DI) DIN hold 8 8 ns
tr Rise time 10%-90% Rise Time 8 4 ns
tf Fall time 90%-10% Fall Time 8 4 ns
All timing specifications are measured at characterization but not tested at final test.

DSP Timing in Master Mode

All specifications at TA = –40°C to 85°C, IOVDD data sheet limits, VIL and VIH applied, VOL and VOH measured at datasheet limits, lumped capacitive load of 20 pF on output pins unless otherwise noted.(1)
SYMBOL PARAMETER CONDITIONS IOVDD = 1.8 V IOVDD = 3.3 V UNIT
MIN MAX MIN MAX
td(WS) BCLK to WCLK delay 50% of BCLK to 50% of WCLK 35 25 ns
td(DO-BCLK) BCLK to DOUT delay 50% of BLCK to 50% of DOUT 35 25 ns
ts(DI) DIN setup 8 8 ns
th(DI) DIN hold 8 8 ns
tr Rise time 10%-90% Rise Time 8 4 ns
tf Fall time 90%-10% Fall Time 8 4 ns
All timing specifications are measured at characterization but not tested at final test.

DSP Timing in Slave Mode

All specifications at TA = –40°C to 85°C, IOVDD data sheet limits, VIL and VIH applied, VOL and VOH measured at datasheet limits, lumped capacitive load of 20 pF on output pins unless otherwise noted.(1)
SYMBOL PARAMETER CONDITIONS IOVDD=1.8V IOVDD=3.3V UNIT
MIN MAX MIN MAX
tH(BCLK) BCLK high period 40 30 ns
tL(BCLK) BCLK low period 40 30 ns
ts(WS) WCLK seutp 8 8 ns
th(WS) WCLK hold 8 8 ns
td(DO-BCLK) BCLK to DOUT delay (For LJF Mode only) 50% BCLK to 50% DOUT 35 25 ns
ts(DI) DIN setup 8 8 ns
th(DI) DIN hold 8 8 ns
tr Rise time 10%-90% Rise Time 8 4 ns
tf Fall time 90%-10% Fall Time 8 4 ns
All timing specifications are measured at characterization but not tested at final test.

PDM Timing

All specifications at TA = –40°C to 85°C, IOVDD data sheet limits, VIL and VIH applied, VOL and VOH measured at datasheet limits, lumped capacitive load of 20 pF on output pins unless otherwise noted.(1)
PARAMETER CONDITIONS IOVDD = 1.8 V IOVDD = 3.3 V UNIT
MIN MAX MIN MAX
ts DIN setup 20 20 ns
th DIN hold 3 3 ns
tr Rise time 10%-90% Rise Time 8 4 ns
tf Fall time 90%-10% Fall Time 8 4 ns
All timing specifications are measured at characterization but not tested at final test.
TAS2560 i2c_timing.gif Figure 1. I2C Timing
TAS2560 master_tim_los585.gif Figure 2. I2S/LJF/RJF Timing in Master Mode
TAS2560 i2sljfrlf_los585.gif Figure 3. I2S/LJF/RJF Timing in Slave Mode
TAS2560 dsp_tim_los585.gif Figure 4. DSP Timing in Master Mode
TAS2560 dsp_slave_los585.gif Figure 5. DSP Timing in Slave Mode
TAS2560 tas5770l_pdm_timing.gif Figure 6. PDM Timing

Typical Characteristics

VBAT = 3.6 V, VDD = IOVDD = 1.8 V, RESETZ = IOVDD, RL = 8 Ω + 33 µH, I2S digital input, Mode 2 (unless otherwise noted).
TAS2560 D001_SLASE86_TAS2560.gif
8 Ω + 33 µH Freq = 1 kHz
Figure 7. THD+N vs Output Power
TAS2560 D003_SLASE86_TAS2560.gif
8 Ω + 33 µH POUT = 1 W
Figure 9. THD+N vs Frequency
TAS2560 D005_SLASE86_TAS2560.gif
8 Ω + 33 µH Freq = 1 kHz
Figure 11. THD+N vs Output Power
TAS2560 D007_SLASE86_TAS2560.gif
Figure 13. VBAT Supply Ripple Rejection vs Frequency
TAS2560 D009_SLASE86_TAS2560.gif
8 Ω + 33 µH SSM Mode
Figure 15. Efficiency vs Output Power Low Inrush
TAS2560 D011_SLASE86_TAS2560.gif
8 Ω + 33 µH SSM Mode
Figure 17. Efficiency vs Output Power High Efficiency
TAS2560 D013_SLASE86_TAS2560.gif
8 Ω+ 33 µH
Figure 19. Output Power for 1% and 10% THD+N vs VBAT
TAS2560 D015_SLASE86_TAS2560.gif
8 Ω + 33 µH
Figure 21. V/I Linearity vs Output Power
TAS2560 D002_SLASE86_TAS2560.gif
4 Ω + 16 µH Freq = 1 kHz
Figure 8. THD+N vs Output Power
TAS2560 D004_SLASE86_TAS2560.gif
4 Ω + 16 µH POUT = 1 W
Figure 10. THD+N vs Frequency
TAS2560 D006_SLASE86_TAS2560.gif
8 Ω + 33 µH POUT = 1 W
Figure 12. THD+N vs Frequency
TAS2560 D008_SLASE86_TAS2560.gif
Figure 14. AVDD Supply Ripple Rejection vs Frequency
TAS2560 D010_SLASE86_TAS2560.gif
4 Ω + 16 µH SSM Mode
Figure 16. Efficiency vs Output Power Low Inrush
TAS2560 D012_SLASE86_TAS2560.gif
4 Ω + 16 µH SSM Mode
Figure 18. Efficiency vs Output Power High Efficiency
TAS2560 D014_SLASE86_TAS2560.gif
4 Ω+ 16 µH
Figure 20. Output Power for 1% and 10% THD+N vs VBAT
TAS2560 D016_SLASE86_TAS2560.gif
4 Ω+ 16µH
Figure 22. V/I Linearity vs Output Power