JAJSV18 July   2024 TCAN1473A-Q1

ADVANCE INFORMATION  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  ESD Ratings - IEC Specifications
    4. 5.4  Recommended Operating Conditions
    5. 5.5  Thermal Information
    6. 5.6  Power Dissipation Ratings
    7. 5.7  Power Supply Characteristics
    8. 5.8  Electrical Characteristics
    9. 5.9  Timing Requirements
    10. 5.10 Switching Characteristics
    11. 5.11 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Supply Pins
        1. 7.3.1.1 VSUP Pin
        2. 7.3.1.2 VCC Pin
        3. 7.3.1.3 VIO Pin
      2. 7.3.2 Digital Inputs and Outputs
        1. 7.3.2.1 TXD Pin
        2. 7.3.2.2 RXD Pin
        3. 7.3.2.3 nFAULT Pin
        4. 7.3.2.4 EN Pin
        5. 7.3.2.5 nSTB Pin
        6. 7.3.2.6 INH_MASK Pin
      3. 7.3.3 GND
      4. 7.3.4 INH Pin
      5. 7.3.5 WAKE Pin
      6. 7.3.6 CAN Bus Pins
      7. 7.3.7 Faults
        1. 7.3.7.1 Internal and External Fault Indicators
          1. 7.3.7.1.1 Power-Up (PWRON Flag)
          2. 7.3.7.1.2 Wake-Up Request (WAKERQ Flag)
          3. 7.3.7.1.3 Undervoltage Faults
            1. 7.3.7.1.3.1 Undervoltage on VSUP
            2. 7.3.7.1.3.2 Undervoltage on VCC
            3. 7.3.7.1.3.3 Undervoltage on VIO
          4. 7.3.7.1.4 CAN Bus Fault (CBF Flag)
          5. 7.3.7.1.5 TXD Clamped Low (TXDCLP Flag)
          6. 7.3.7.1.6 TXD Dominant State Timeout (TXDDTO Flag)
          7. 7.3.7.1.7 TXD Shorted to RXD Fault (TXDRXD Flag)
          8. 7.3.7.1.8 CAN Bus Dominant Fault (CANDOM Flag)
      8. 7.3.8 Local Faults
        1. 7.3.8.1 TXD Clamped Low (TXDCLP)
        2. 7.3.8.2 TXD Dominant Timeout (TXD DTO)
        3. 7.3.8.3 Thermal Shutdown (TSD)
        4. 7.3.8.4 Undervoltage Lockout (UVLO)
        5. 7.3.8.5 Unpowered Devices
        6. 7.3.8.6 Floating Terminals
        7. 7.3.8.7 CAN Bus Short-Circuit Current Limiting
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operating Mode Description
        1. 7.4.1.1 Normal Mode
        2. 7.4.1.2 Silent Mode
        3. 7.4.1.3 Standby Mode
        4. 7.4.1.4 Go-To-Sleep Mode
        5. 7.4.1.5 Sleep Mode
          1. 7.4.1.5.1 Remote Wake Request via Wake-Up Pattern (WUP)
          2. 7.4.1.5.2 Local Wake-Up (LWU) via WAKE Input Terminal
      2. 7.4.2 CAN Transceiver
        1. 7.4.2.1 CAN Transceiver Operation
          1. 7.4.2.1.1 CAN Transceiver Modes
            1. 7.4.2.1.1.1 CAN Off Mode
            2. 7.4.2.1.1.2 CAN Autonomous: Inactive and Active
            3. 7.4.2.1.1.3 CAN Active
          2. 7.4.2.1.2 Driver and Receiver Function Tables
          3. 7.4.2.1.3 CAN Bus States
  9. Application Information Disclaimer
    1. 8.1 Application Information
      1. 8.1.1 Typical Application
      2. 8.1.2 Design Requirements
        1. 8.1.2.1 Bus Loading, Length and Number of Nodes
      3. 8.1.3 Detailed Design Procedure
        1. 8.1.3.1 CAN Termination
      4. 8.1.4 Application Curves
      5. 8.1.5 Power Supply Recommendations
      6. 8.1.6 Layout
        1. 8.1.6.1 Layout Guidelines
        2. 8.1.6.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
    2. 9.2 ドキュメントの更新通知を受け取る方法
    3. 9.3 サポート・リソース
    4. 9.4 Trademarks
    5. 9.5 静電気放電に関する注意事項
    6. 9.6 用語集
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • D|14
  • DYY|14
  • DMT|14
サーマルパッド・メカニカル・データ
発注情報
Local Wake-Up (LWU) via WAKE Input Terminal

The WAKE terminal is a bi-directional high-voltage reverse-battery protected input which can be used for local wake-up (LWU) requests via a voltage transition. A LWU event is triggered on either a low-to-high or high-to-low transition since it has bi-directional input thresholds. The WAKE pin could be used with a switch to VSUP or to ground. If the terminal is unused it should be pulled to VSUP or ground to avoid unwanted parasitic wake-up events.

TCAN1473A-Q1 WAKE Circuit ExampleFigure 7-7 WAKE Circuit Example

Figure 7-7 shows two possible configurations for the WAKE pin, a low-side and high-side switch configuration. The objective of the series resistor, RSERIES, is to protect the WAKE input of the device from over current conditions that may occur in the event of a ground shift or ground loss. The minimum value of RSERIES can be calculated using the maximum supply voltage, VSUPMAX, and the maximum allowable current of the WAKE pin, IIO(WAKE). RSERIES is calculated using:

Equation 3. RSERIES = VSUPMAX / IIO(WAKE)

With absolute maximum voltage, VSUPMAX, of 45V and maximum allowable IIO(WAKE) of 3mA, the minimum required RSERIES value is 15kΩ.

The RBIAS resistor is used to set the static voltage level of the WAKE input when the switch is released. When the switch is in use in a high-side switch configuration, the RBIAS resistor in combination with the RSERIES resistor sets the WAKE pin voltage above the VIH threshold. The maximum value of RBIAS can be calculated using the maximum supply voltage, VSUPMAX, the maximum WAKE threshold voltage VIH, the maximum WAKE input current IIH and the series resistor value RSERIES. RBIAS is calculated using:

Equation 4. RBIAS < ((VSUPMAX - VIH) / IIH) - RSERIES

With VSUPMAX of 45V, VIH of 44V at IIH of 3µA, the RBIAS resistor value must be less than 330kΩ. It is recommended to use RSeries less than 50kΩ to provide better margin for the WAKE pin voltage to rise above VIH when the switch is released.

The LWU circuitry is active in sleep mode.

The WAKE circuitry is switched off in normal mode.

TCAN1473A-Q1 LWU Request Rising EdgeFigure 7-8 LWU Request Rising Edge
TCAN1473A-Q1 LWU Request Falling EdgeFigure 7-9 LWU Request Falling Edge