JAJSQ17A March   2023  – November 2023 TCAN3413 , TCAN3414

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  ESD Ratings, IEC Transients
    4. 5.4  Recommended Operating Conditions
    5. 5.5  Thermal Characteristics
    6. 5.6  Supply Characteristics
    7. 5.7  Dissipation Ratings
    8. 5.8  Electrical Characteristics
    9. 5.9  Switching Characteristics
    10. 5.10 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Pin Descripton
        1. 7.3.1.1 TXD
        2. 7.3.1.2 GND
        3. 7.3.1.3 VCC
        4. 7.3.1.4 RXD
        5. 7.3.1.5 VIO (TCAN3413 only)
        6. 7.3.1.6 CANH and CANL
        7. 7.3.1.7 STB (Standby)
        8. 7.3.1.8 SHDN (Shutdown)
      2. 7.3.2 CAN Bus States
      3. 7.3.3 TXD Dominant Timeout (DTO)
      4. 7.3.4 CAN Bus short-circuit current limiting
      5. 7.3.5 Thermal Shutdown (TSD)
      6. 7.3.6 Undervoltage Lockout
      7. 7.3.7 Unpowered Device
      8. 7.3.8 Floating pins
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operating Modes
      2. 7.4.2 Normal Mode
      3. 7.4.3 Standby Mode
        1. 7.4.3.1 Remote Wake Request via Wake-Up Pattern (WUP) in Standby Mode
      4. 7.4.4 Shutdown Mode
      5. 7.4.5 Driver and Receiver Function
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
        1. 8.2.1.1 CAN Termination
      2. 8.2.2 Detailed Design Procedures
        1. 8.2.2.1 Bus Loading, Length and Number of Nodes
      3. 8.2.3 Application Curves
    3. 8.3 System Examples
      1. 8.3.1 ISO 11898-2 Compatibility of TCAN341x Family of 3.3-V CAN Transceivers
        1. 8.3.1.1 Introduction
        2. 8.3.1.2 Differential Signal
        3. 8.3.1.3 Common-Mode Signal
        4. 8.3.1.4 Interoperability of 3.3-V CAN in 5-V CAN Systems
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 ドキュメントの更新通知を受け取る方法
    2. 9.2 サポート・リソース
    3. 9.3 Trademarks
    4. 9.4 静電気放電に関する注意事項
    5. 9.5 用語集
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • D|8
  • DDF|8
  • DRB|8
サーマルパッド・メカニカル・データ
発注情報

Electrical Characteristics

parameters valid over recommended operating conditions with -40℃ ≤ TJ ≤ 150℃ (Typical values are at VCC = 3.3 V, VIO = 3.3 V for TCAN3413, Device ambient maintained at 27℃) unless otherwise noted
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Driver Electrical Characteristics
VO(DOM) Dominant output voltage normal mode CANH TXD = 0 V, STB, SHDN = 0 V
50 Ω ≤ RL ≤ 65 Ω, CL = open
See Figure 6-2 and Figure 7-3 
2.25 VCC V
CANL 0.5 1.25 V
VO(REC) Recessive output voltage normal mode CANH and CANL TXD = VIO or VCC, STB, SHDN = 0 V
RL = open (no load), CL = open
See Figure 6-2 and Figure 7-3  
1.5 1.9 2.25 V
VSYM Driver symmetry
{(VO(CANH) + VO(CANL))/(VO(REC_CANH) + VO(REC_CANL)}
TXD = 250 kHz, 1 MHz, 2.5 MHz, STB, SHDN = 0 V
RL = 60, CSPLIT = 4.7 nF, CL = open
See Figure 6-2 and Figure 8-2 
0.9 1.1 V/V
VSYM_DC DC output symmetry
(CANHREC + CANLREC - CANHDOM - CANLDOM)
STB, SHDN = 0 V
RL = 60 Ω, C= open
See Figure 6-2 and Figure 7-3 
–400 400 mV
VOD(DOM) Differential output voltage normal mode
Dominant
CANH - CANL TXD = 0 V, STB. SHDN = 0 V
50 Ω ≤ RL ≤ 65 Ω, C= open
See Figure 6-2 and Figure 7-3 
1.5 3 V
TXD = 0 V, STB, SHDN = 0 V
45 Ω ≤ RL ≤ 70 Ω, C= open
See Figure 6-2 and Figure 7-3 
1.4 3 V
CANH - CANL TXD = 0 V, STB, SHDN = 0 V
RL = 2240 Ω, C= open
See Figure 6-2 and Figure 7-3 
1.5 3.4 V
VOD(REC) Differential output voltage normal mode
Recessive
CANH - CANL TXD = VIO or VCC, STB, SHDN = 0 V
RL = 60 Ω, C= open
See Figure 6-2 and Figure 7-3 
–120 12 mV
CANH - CANL TXD = VIO or VCC, STB, SHDN = 0 V
RL = open, C= open
See Figure 6-2 and Figure 7-3 
–50 50 mV
VO(STB) Bus output voltage standby mode CANH TXD = STB = VIO or VCC,
RL = open , C= open
See Figure 6-2 and Figure 7-3 
-0.1 0.1 V
CANL -0.1 0.1 V
CANH - CANL -0.2 0.2 V
IOS(DOM) Short-circuit bus output current, dominant, normal mode  See Figure 6-7 and Figure 7-3, V(CANH) = -15 V to 40 V, CANL = open, TXD = 0 V  –115 115 mA
See Figure 6-7 and Figure 7-3 , V(CAN_L) = -15 V to 40 V, CANH = open, TXD = 0 V  –115 115 mA
IOS(REC) Short-circuit steady-state output current, recessive, normal mode  See Figure 6-7 and Figure 7-3 , V(CANH) = -27 V to 32 V, CANL = open, STB=0, TXD = VIO or VCC, –7 7 mA
See Figure 6-7 and Figure 7-3 , V(CANL) = -27 V to 32 V, CANH = open, STB = 0, TXD = VIO or VCC, –7 7 mA
Receiver Electrical Characteristics
VIT Input threshold voltage normal mode See Figure 6-3 and Table 7-6
 -30 V ≤ VCM ≤ 30 V, STB, SHDN= 0 V
500 900 mV
VIT(STB) Input threshold standby mode, TCAN3414 See Figure 6-3 and Table 7-6 
 -30 V ≤ VCM ≤ 30 V, SHDN= 0 V, STB= VCC
400 1150 mV
Input threshold standby mode, TCAN3413 See Figure 6-3 and Table 7-6
VIO = 3 V to 3.6 V, -30 V ≤ VCM ≤ 30 V, STB= VIO
400 1150 mV
See Figure 6-3 and Table 7-6 
VIO = 1.7 V to 1.9 V, 2.25 V to 2.75 V, -12 V ≤ VCM ≤ 12 V, STB= VIO
400 1150 mV
VDOM Normal mode dominant state differential input voltage range See Figure 6-3 and Table 7-6 
 -30 V ≤ VCM ≤ 30 V, STB, SHDN= 0 V
0.9 9 V
VREC Normal mode recessive state differential input voltage range See Figure 6-3 and Table 7-6 
-30 V ≤ VCM ≤ 30 V, STB, SHDN= 0 V
-4 0.5 V
VDOM(STB) Standby mode dominant state differential input voltage range See Figure 6-3 and Table 7-6 
SHDN= 0 V, STB = VIO, -30 V ≤ VCM ≤ 30 V
1.15 9 V
VREC(STB) Standby mode recessive state differential input voltage range See Figure 6-3 and Table 7-6 
SHDN = 0 V, STB = VIO, -30 V ≤ VCM ≤ 30 V
-4 0.4 V
VHYS Hysteresis voltage for input threshold normal mode See Figure 6-3 and Table 7-6 
 -30 V ≤ VCM ≤ 30 V, STB, SHDN= 0 V
50 mV
VCM Common mode range normal and standby modes See Figure 6-3 and Table 7-6 –30 30 V
ILKG(IOFF) Unpowered bus input leakage current CANH = CANL = 5 V,  VCC = VIO = GND 5 µA
CI Input capacitance to ground (CANH or CANL) TXD = VIO, 40 pF
CID Differential input capacitance 20 pF
RID Differential input resistance TXD = VIO, STB = 0 V -30 V ≤ VCM ≤ 30 V 25 50
RIN Single ended input resistance
(CANH or CANL)
13 25
RIN(M) Input resistance matching
[1 – (RIN(CANH) / RIN(CANL))] × 100 %
V(CAN_H) = V(CAN_L) = 5 V –3 3 %
TXD Terminal (CAN Transmit Data Input)
VIH High-level input voltage TCAN3414 0.7 VCC V
VIH High-level input voltage TCAN3413 0.7 VIO V
VIL Low-level input voltage TCAN3414 0.3 VCC V
VIL Low-level input voltage TCAN3413 0.3 VIO V
IIH High-level input leakage current TXD = VCC = VIO = 3.6 V –2.5 0 1 µA
IIL Low-level input leakage current TXD = 0 V, VCC = VIO = 3.6 V –200 -100 –20 µA
ILKG(OFF) Unpowered leakage current TXD = 3.6 V, VCC = VIO = 0 V –1 0 1 µA
CI Input capacitance 4 pF
RXD Terminal (CAN Receive Data Output)
VOH High-level output voltage TCAN3414
See Figure 6-3 , IO = –2 mA
0.8 VCC V
VOH High-level output voltage See Figure 6-3 , IO = –1.5 mA, TCAN3413 0.8 VIO   V
VOL Low-level output voltage TCAN3414
See Figure 6-3 , IO = 2 mA
0.2 VCC V
VOL Low-level output voltage TCAN3413
See Figure 6-3 , IO = 1.5 mA
  0.2 VIO V
ILKG(OFF) Unpowered leakage current RXD = 3.6 V, VCC = VIO = 0 V –1 0 1 µA
 STB Terminal (Standby Mode Input)
VIH High-level input voltage TCAN3414 0.7 VCC V
VIH High-level input voltage TCAN3413 0.7 VIO V
VIL Low-level input voltage TCAN3414 0.3 VCC V
VIL Low-level input voltage TCAN3413 0.3 VIO V
IIH High-level input leakage current  VCC = VIO = STB = 3.6 V –2 2 µA
IIL Low-level input leakage current  VCC = VIO = 3.6 V, STB = 0 V –20 –2 µA
ILKG(OFF) Unpowered leakage current STB = 3.6V, VCC= VIO = 0 V –1 0 1 µA
SHDN Terminal (Shutdown mode input)
VIH High-level input voltage TCAN3414 0.7 VCC V
VIL Low-level input voltage TCAN3414 0.3 VCC V
IIH High-level input leakage current  VCC = VIO = SHDN = 3.6 V 2 5.5 µA
IIL Low-level input leakage current  VCC = VIO = 3.6 V, SHDN = 0 V –2 2 µA
ILKG(OFF) Unpowered leakage current SHDN = 3.6 V, VCC= VIO = 0 V –1 0 1 µA