JAJSPS5C October   2014  – February 2023 TDC1000

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. 改訂履歴
  5. ピン構成および機能
  6. 仕様
    1. 6.1 絶対最大定格
    2. 6.2 ESD 定格
    3. 6.3 推奨動作条件
    4. 6.4 熱に関する情報 #GUID-85677192-3B04-4958-89B0-56EA7EB89E00/APPNOTE_SPRA953
    5. 6.5 電気的特性
    6. 6.6 タイミング要件
    7. 6.7 スイッチング特性
    8. 6.8 代表的特性
  7. パラメータ測定情報
  8. 詳細説明
    1. 8.1 概要
    2. 8.2 機能ブロック図
    3. 8.3 機能説明
      1. 8.3.1 トランスミッタの信号パス
      2. 8.3.2 レシーバ信号パス
      3. 8.3.3 低ノイズ・アンプ (LNA)
      4. 8.3.4 プログラマブル・ゲイン・アンプ (PGA)
      5. 8.3.5 レシーバ・フィルタ
      6. 8.3.6 STOP パルス生成用のコンパレータ
        1. 8.3.6.1 スレッショルド検出器と DAC
        2. 8.3.6.2 ゼロクロス検出コンパレータ
        3. 8.3.6.3 イベント・マネージャ
      7. 8.3.7 同相バッファ (VCOM)
      8. 8.3.8 温度センサ
        1. 8.3.8.1 複数の RTD による温度測定
        2. 8.3.8.2 単一の RTD による温度測定
    4. 8.4 デバイスの機能モード
      1. 8.4.1 TOF 測定モード
        1. 8.4.1.1 モード 0
        2. 8.4.1.2 モード 1
        3. 8.4.1.3 モード 2
      2. 8.4.2 ステート・マシン
      3. 8.4.3 送信動作
        1. 8.4.3.1 送信パルスのカウント
        2. 8.4.3.2 TX の 180°パルス・シフト
        3. 8.4.3.3 トランスミッタのダンピング
      4. 8.4.4 RECEIVE 動作
        1. 8.4.4.1 シングル・エコー受信モード
        2. 8.4.4.2 マルチ・エコー受信モード
      5. 8.4.5 タイミング
        1. 8.4.5.1 タイミング制御と周波数スケーリング (CLKIN)
        2. 8.4.5.2 TX/RX 測定のシーケンスとタイミング
      6. 8.4.6 TOF (飛行時間) 制御
        1. 8.4.6.1 短い TOF 測定
        2. 8.4.6.2 標準 TOF 測定
        3. 8.4.6.3 パワー・ブランキングを使用する標準 TOF 測定
        4. 8.4.6.4 同相リファレンス電圧のセトリング・タイム
        5. 8.4.6.5 TOF 測定のインターバル
      7. 8.4.7 平均化とチャネル選択
      8. 8.4.8 エラー報告
    5. 8.5 プログラミング
      1. 8.5.1 シリアル・ペリフェラル・インターフェイス (SPI)
        1. 8.5.1.1 チップ・セレクト・バー (CSB)
        2. 8.5.1.2 シリアル・クロック (SCLK)
        3. 8.5.1.3 シリアル・データ入力 (SDI)
        4. 8.5.1.4 シリアル・データ出力 (SDO)
    6. 8.6 レジスタ・マップ
  9. アプリケーションと実装
    1. 9.1 アプリケーション情報
    2. 9.2 代表的なアプリケーション
      1. 9.2.1 液位と液体の識別の測定
        1. 9.2.1.1 設計要件
        2. 9.2.1.2 詳細な設計手順
          1. 9.2.1.2.1 液位測定
          2. 9.2.1.2.2 液体識別
        3. 9.2.1.3 アプリケーション曲線
      2. 9.2.2 水流量測定
        1. 9.2.2.1 設計要件
        2. 9.2.2.2 詳細な設計手順
          1. 9.2.2.2.1 規制と精度
          2. 9.2.2.2.2 超音波流量計での伝搬時間差方式
          3. 9.2.2.2.3 ΔTOF の精度要件の計算
          4. 9.2.2.2.4 動作
        3. 9.2.2.3 アプリケーション曲線
    3. 9.3 電源に関する推奨事項
    4. 9.4 レイアウト
      1. 9.4.1 レイアウトのガイドライン
      2. 9.4.2 レイアウト例
  10. 10デバイスおよびドキュメントのサポート
    1. 10.1 デバイスのサポート
      1. 10.1.1 開発サポート
    2. 10.2 ドキュメントの更新通知を受け取る方法
    3. 10.3 サポート・リソース
    4. 10.4 商標
    5. 10.5 静電気放電に関する注意事項
    6. 10.6 用語集
  11. 11メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

マルチ・エコー受信モード

マルチ・エコー・モードは、レベル・センシング・アプリケーションや、複数のエコー (バースト) を受信する距離 / 変位測定で使用することを目的としています。この条件では、受信した各エコー・グループは STOP ピンで単一のパルスとして処理されます。CONFIG_1 レジスタの NUM_RX フィールドの値に基づいて、最大 7 つの STOP パルスを生成できます。マルチ・エコー・モードは、CONFIG_4 レジスタで RECEIVE_MODE ビットを 1 にセットするとイネーブルできます。複数のエコー STOP パルスが生成される状態を、図 8-20 に示します。

GUID-3CFB3B3E-5405-48AF-9F51-AE4D90FAAC01-low.gif図 8-20 マルチ・エコー受信モード (5 つの STOP イベント)

STOP パルスの立ち上がりエッジは、ゼロクロス・イベントによって生成されます。シングル・エコー受信モードと同様に、スレッショルド・コンパレータは、プログラムされたスレッショルド電圧よりも小さい RX 振幅が検出された後で、次のゼロクロスを認定します。RX 振幅がスレッショルド電圧よりも小さい状態が終了してから、STOP パルスがゼロクロスまで延長されます (図 8-21を参照)。

GUID-3A7F0B27-9C22-41EA-A59E-949DF02ADECD-low.gif図 8-21 マルチ・エコー受信モード (拡大)

NUM_RX にプログラムされた予測パルス数と同じ数のパルスが受信されない、または TOF 動作がタイムアウトした場合、TDC1000 は ERROR_FLAGS レジスタにエラー状態を示し、ERRB ピンを Low に設定します。