SNLS766 July   2024 TDP20MB421

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 DC Electrical Characteristics
    6. 5.6 High-Speed Electrical Characteristics
    7. 5.7 SMBUS/I2C Timing Characteristics
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 5-Level Control Inputs
      2. 6.3.2 Linear Equalization
      3. 6.3.3 Flat Gain
    4. 6.4 Device Functional Modes
      1. 6.4.1 Active Mode
      2. 6.4.2 Standby Mode
    5. 6.5 Programming
      1. 6.5.1 Pin Mode
      2. 6.5.2 SMBUS/I2C Register Control Interface
        1. 6.5.2.1 Shared Registers
        2. 6.5.2.2 Channel Registers
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Applications
      1. 7.2.1 DP 2.1 Mainlink Signal Conditioning
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
        3. 7.2.1.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Receiving Notification of Documentation Updates
    2. 8.2 Support Resources
    3. 8.3 Trademarks
    4. 8.4 Electrostatic Discharge Caution
    5. 8.5 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Design Requirements

As with any high-speed design, there are many factors influencing the overall performance. The following list indicates the critical areas to consider during the design process:

  • Use 85Ω impedance traces. Perform length matching on the P and N traces on the single-ended segments of the differential pair.
  • Use a uniform trace width and spacing for differential pairs.
  • Place AC-coupling capacitors near to the receiver end of each channel segment to minimize reflections.
  • For Gen 3.0, 4.0, and 5.0, AC-coupling capacitors of 220nF are recommended with a maximum body size of 0402 and a cutout void on the GND plane below the landing pad of the capacitor to reduce parasitic capacitance to GND.
  • Back-drill connector vias and signal vias to minimize stub length.
  • Use reference plane vias to ensure a low inductance path for the return current.