SLES032E June   2002  – September 2014 THS8200

PRODUCTION DATA.  

  1. Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. Revision History
  3. Terminal Configuration and Functions
    1. 3.1 Terminal Functions
  4. Specifications
    1. 4.1  Absolute Maximum Ratings
    2. 4.2  Handling Ratings
    3. 4.3  Recommended Operating Conditions
    4. 4.4  Power Consumption Summary
    5. 4.5  Power Supply
    6. 4.6  Digital Inputs, DC Characteristics
    7. 4.7  Analog (DAC) Outputs
    8. 4.8  Nonlinearity
      1. 4.8.1 Differential Nonlinearity (DNL) and Integral Nonlinearity (INL) for 700 mV Without Bias
      2. 4.8.2 Differential Nonlinearity (DNL) and Integral Nonlinearity (INL) for 700 mV + 350-mV Bias
      3. 4.8.3 Differential Nonlinearity (DNL) and Integral Nonlinearity (INL) for 1.25 V Without Bias
    9. 4.9  Analog Output Bandwidth (sinx/x corrected) at fS = 205 MSPS
    10. 4.10 Output Compliance vs Full-Scale Adjustment Resistor Value
    11. 4.11 Vertical Sync of the HDTV 1080I Format Preset in First and Second Field, and Horizontal Line Waveform Detail
  5. Functional Overview
    1. 5.1 Data Manager (DMAN)
      1. 5.1.1  Interpolating Finite Impulse Responses Filter (IFIR)
      2. 5.1.2  Color-Space Conversion (CSC)
      3. 5.1.3  Clip/Shift/Multiplier (CSM)
      4. 5.1.4  Digital Multiplexer (DIGMUX)
      5. 5.1.5  Display Timing Generator (DTG)
      6. 5.1.6  Clock Generator (CGEN)
      7. 5.1.7  Clock Driver (CDRV)
      8. 5.1.8  I2C Host Interface (I2CSLAVE)
      9. 5.1.9  Test Block (TST)
      10. 5.1.10 D/A Converters (DACs)
  6. Detailed Functional Description
    1. 6.1  Data Manager (DMAN)
    2. 6.2  Input Interface Formats
    3. 6.3  Clock Generator (CGEN)/Clock Driver (CDRV)
    4. 6.4  Color Space Conversion (CSC)
    5. 6.5  Clip/Shift/Multiplier (CSM)
      1. 6.5.1 Clipping
      2. 6.5.2 Shifting
      3. 6.5.3 Multiplying
    6. 6.6  Interpolating Finite Impulse Response Filter (IFIR)
    7. 6.7  Display Timing Generator (DTG)
      1. 6.7.1 Overview of Functionality
      2. 6.7.2 Functional Description
        1. 6.7.2.1 Predefined DTG Video Formats (Presets)
        2. 6.7.2.2 Internal Synchronization
        3. 6.7.2.3 Output Synchronization: Composite Sync
        4. 6.7.2.4 Output Synchronization: Hsync/Vsync Outputs
      3. 6.7.3 DTG Line Type Overview
        1. 6.7.3.1  HDTV Mode
        2. 6.7.3.2  Active Video
        3. 6.7.3.3  FULL NTSP (Full Normal Tri-Level Sync Pulse)
        4. 6.7.3.4  NTSP NTSP (Normal Tri-Level Sync Pulse/Normal Tri-Level Sync Pulse)
        5. 6.7.3.5  BTSP BTSP (Broad Pulse and Tri-Level Sync Pulse/Broad Pulse and Tri-Level Sync Pulse)
        6. 6.7.3.6  NTSP BTSP (Normal Tri-Level Sync Pulse/ Broad Pulse and Tri-Level Sync Pulse)
        7. 6.7.3.7  BTSP NTSP (Broad Pulse and Tri-Level Sync Pulse/Normal Tri-Level Sync Pulse)
        8. 6.7.3.8  Full BTSP (Full Broad Pulse and Tri-Level Sync Pulse)
        9. 6.7.3.9  SDTV Mode
        10. 6.7.3.10 NEQ_NEQ (Negative Equalization Pulse/Negative Equalization Pulse)
        11. 6.7.3.11 FULL_BSP (Full Broad Sync Pulse)
        12. 6.7.3.12 BSP_BSP (Broad Sync Pulse/Broad Sync Pulse)
        13. 6.7.3.13 FULL_NSP (Full Normal Sync Pulse)
        14. 6.7.3.14 NEQ_BSP (Negative Equalization Pulse/Broad Sync Pulse)
        15. 6.7.3.15 BSP_NEQ (Broad Sync Pulse/Negative Equalization Pulse)
        16. 6.7.3.16 FULL_NEQ (Full Negative Equalization Pulse)
        17. 6.7.3.17 NSP_ACTIVE (Normal Sync Pulse/Active Video)
        18. 6.7.3.18 ACTIVE_NEQ (Active Video/Negative Equalization Pulse)
        19. 6.7.3.19 ACTIVE VIDEO
    8. 6.8  D/A Conversion
      1. 6.8.1 RGB Output Without Sync Signal Insertion/General-Purpose Application DAC
      2. 6.8.2 SMPTE-Compatible RGB Output With Sync Signal Inserted on G (Green) Channel
      3. 6.8.3 SMPTE-Compatible Analog-Level Output With Sync Inserted on All RGB Channels
      4. 6.8.4 SMPTE-Compatible YPbPr Output With Sync Signal Inserted on Y Channel Only
      5. 6.8.5 SMPTE-Compatible YPbPr Output With Sync Signal Inserted on All Channels
      6. 6.8.6 Summary of Supported Video Formats
    9. 6.9  Test Functions
    10. 6.10 Power Down
    11. 6.11 CGMS Insertion
    12. 6.12 I2C Interface
  7. I2C Registers
    1. 7.1 I2C Register Map
    2. 7.2 Register Descriptions
      1. 7.2.1 System Control (Sub-Addresses 0x02−0x03)
      2. 7.2.2 Color Space Conversion Control (Sub-Addresses 0x04−0x19)
      3. 7.2.3 Test Control (Sub-Addresses 0x1A−0x1B)
      4. 7.2.4 Data Path Control (Sub-Address 0x1C)
      5. 7.2.5 Display Timing Generator Control, Part 1 (Sub-Addresses 0x1D−0x3C)
      6. 7.2.6 DAC Control (Sub-Addresses 0x3D−0x40)
      7. 7.2.7 Clip/Shift/Multiplier Control (Sub-Addresses 0x41−0x4F)
      8. 7.2.8 Display Timing Generator Control, Part 2 (Sub-Addresses 0x50−0x82)
      9. 7.2.9 CGMS Control (Sub-Addresses 0x83−0x85)
    3. 7.3 THS8200 Preset Mode Line Type Definitions
      1. 7.3.1 SMPTE_274P (1080P)
      2. 7.3.2 274M Interlaced (1080I)
      3. 7.3.3 296M Progressive (720P)
      4. 7.3.4 SDTV 525 Interlaced Mode
      5. 7.3.5 SDTV 525 Progressive Mode
      6. 7.3.6 SDTV 625 Interlaced Mode
  8. Application Information
    1. 8.1 Video vs Computer Graphics Application
    2. 8.2 DVI to Analog YPbPr/RGB Application
    3. 8.3 Master vs Slave Timing Modes
  9. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
        1. 9.1.1.1 Getting Started and Next Steps
      2. 9.1.2 Device Nomenclature
    2. 9.2 Documentation Support
      1. 9.2.1 Community Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

9 Device and Documentation Support

9.1 Device Support

9.1.1 Development Support

9.1.1.1 Getting Started and Next Steps

To get started with TI video and imaging product, see the Parametric Search on www.ti.com.

9.1.2 Device Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all devices and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for example, THS8200).

Device development evolutionary flow:

    XExperimental device that is not necessarily representative of the final device's electrical specifications and may not use production assembly flow.
    PPrototype device that is not necessarily the final silicon die and may not necessarily meet final electrical specifications.
    nullProduction version of the silicon die that is fully qualified.

X and P devices are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

Production devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (X or P) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, PFP) and the temperature range (for example, blank is the default commercial temperature range).

For orderable part numbers of THS8200 devices in the PFP package types, see the Package Option Addendum of this document, the TI website (www.ti.com), or contact your TI sales representative.

9.2 Documentation Support

The following documents describe the THS8200 device. Copies of these documents are available on the Internet at www.ti.com. Additional documents are available at www.ti.com/product/ths8200.

    SLEA078THS8200 PCB Layout Guidelines. Guidelines to help optimize device performance.
    SPRA961High Resolution Video Using the DM642 DSP and the THS8200 Driver. Gives a brief discussion on the HDTV standards and demonstrates the hardware requirements and implementation for interfacing the DM642 video port to a THS8200.

9.2.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

    TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.
    TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help developers get started with Embedded Processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices.

9.3 Trademarks

PowerPAD, E2E are trademarks of Texas Instruments.

All other trademarks are the property of their respective owners.

9.4 Electrostatic Discharge Caution

esds-image

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.5 Glossary

SLYZ022TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.