SLES032E June   2002  – September 2014 THS8200

PRODUCTION DATA.  

  1. Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. Revision History
  3. Terminal Configuration and Functions
    1. 3.1 Terminal Functions
  4. Specifications
    1. 4.1  Absolute Maximum Ratings
    2. 4.2  Handling Ratings
    3. 4.3  Recommended Operating Conditions
    4. 4.4  Power Consumption Summary
    5. 4.5  Power Supply
    6. 4.6  Digital Inputs, DC Characteristics
    7. 4.7  Analog (DAC) Outputs
    8. 4.8  Nonlinearity
      1. 4.8.1 Differential Nonlinearity (DNL) and Integral Nonlinearity (INL) for 700 mV Without Bias
      2. 4.8.2 Differential Nonlinearity (DNL) and Integral Nonlinearity (INL) for 700 mV + 350-mV Bias
      3. 4.8.3 Differential Nonlinearity (DNL) and Integral Nonlinearity (INL) for 1.25 V Without Bias
    9. 4.9  Analog Output Bandwidth (sinx/x corrected) at fS = 205 MSPS
    10. 4.10 Output Compliance vs Full-Scale Adjustment Resistor Value
    11. 4.11 Vertical Sync of the HDTV 1080I Format Preset in First and Second Field, and Horizontal Line Waveform Detail
  5. Functional Overview
    1. 5.1 Data Manager (DMAN)
      1. 5.1.1  Interpolating Finite Impulse Responses Filter (IFIR)
      2. 5.1.2  Color-Space Conversion (CSC)
      3. 5.1.3  Clip/Shift/Multiplier (CSM)
      4. 5.1.4  Digital Multiplexer (DIGMUX)
      5. 5.1.5  Display Timing Generator (DTG)
      6. 5.1.6  Clock Generator (CGEN)
      7. 5.1.7  Clock Driver (CDRV)
      8. 5.1.8  I2C Host Interface (I2CSLAVE)
      9. 5.1.9  Test Block (TST)
      10. 5.1.10 D/A Converters (DACs)
  6. Detailed Functional Description
    1. 6.1  Data Manager (DMAN)
    2. 6.2  Input Interface Formats
    3. 6.3  Clock Generator (CGEN)/Clock Driver (CDRV)
    4. 6.4  Color Space Conversion (CSC)
    5. 6.5  Clip/Shift/Multiplier (CSM)
      1. 6.5.1 Clipping
      2. 6.5.2 Shifting
      3. 6.5.3 Multiplying
    6. 6.6  Interpolating Finite Impulse Response Filter (IFIR)
    7. 6.7  Display Timing Generator (DTG)
      1. 6.7.1 Overview of Functionality
      2. 6.7.2 Functional Description
        1. 6.7.2.1 Predefined DTG Video Formats (Presets)
        2. 6.7.2.2 Internal Synchronization
        3. 6.7.2.3 Output Synchronization: Composite Sync
        4. 6.7.2.4 Output Synchronization: Hsync/Vsync Outputs
      3. 6.7.3 DTG Line Type Overview
        1. 6.7.3.1  HDTV Mode
        2. 6.7.3.2  Active Video
        3. 6.7.3.3  FULL NTSP (Full Normal Tri-Level Sync Pulse)
        4. 6.7.3.4  NTSP NTSP (Normal Tri-Level Sync Pulse/Normal Tri-Level Sync Pulse)
        5. 6.7.3.5  BTSP BTSP (Broad Pulse and Tri-Level Sync Pulse/Broad Pulse and Tri-Level Sync Pulse)
        6. 6.7.3.6  NTSP BTSP (Normal Tri-Level Sync Pulse/ Broad Pulse and Tri-Level Sync Pulse)
        7. 6.7.3.7  BTSP NTSP (Broad Pulse and Tri-Level Sync Pulse/Normal Tri-Level Sync Pulse)
        8. 6.7.3.8  Full BTSP (Full Broad Pulse and Tri-Level Sync Pulse)
        9. 6.7.3.9  SDTV Mode
        10. 6.7.3.10 NEQ_NEQ (Negative Equalization Pulse/Negative Equalization Pulse)
        11. 6.7.3.11 FULL_BSP (Full Broad Sync Pulse)
        12. 6.7.3.12 BSP_BSP (Broad Sync Pulse/Broad Sync Pulse)
        13. 6.7.3.13 FULL_NSP (Full Normal Sync Pulse)
        14. 6.7.3.14 NEQ_BSP (Negative Equalization Pulse/Broad Sync Pulse)
        15. 6.7.3.15 BSP_NEQ (Broad Sync Pulse/Negative Equalization Pulse)
        16. 6.7.3.16 FULL_NEQ (Full Negative Equalization Pulse)
        17. 6.7.3.17 NSP_ACTIVE (Normal Sync Pulse/Active Video)
        18. 6.7.3.18 ACTIVE_NEQ (Active Video/Negative Equalization Pulse)
        19. 6.7.3.19 ACTIVE VIDEO
    8. 6.8  D/A Conversion
      1. 6.8.1 RGB Output Without Sync Signal Insertion/General-Purpose Application DAC
      2. 6.8.2 SMPTE-Compatible RGB Output With Sync Signal Inserted on G (Green) Channel
      3. 6.8.3 SMPTE-Compatible Analog-Level Output With Sync Inserted on All RGB Channels
      4. 6.8.4 SMPTE-Compatible YPbPr Output With Sync Signal Inserted on Y Channel Only
      5. 6.8.5 SMPTE-Compatible YPbPr Output With Sync Signal Inserted on All Channels
      6. 6.8.6 Summary of Supported Video Formats
    9. 6.9  Test Functions
    10. 6.10 Power Down
    11. 6.11 CGMS Insertion
    12. 6.12 I2C Interface
  7. I2C Registers
    1. 7.1 I2C Register Map
    2. 7.2 Register Descriptions
      1. 7.2.1 System Control (Sub-Addresses 0x02−0x03)
      2. 7.2.2 Color Space Conversion Control (Sub-Addresses 0x04−0x19)
      3. 7.2.3 Test Control (Sub-Addresses 0x1A−0x1B)
      4. 7.2.4 Data Path Control (Sub-Address 0x1C)
      5. 7.2.5 Display Timing Generator Control, Part 1 (Sub-Addresses 0x1D−0x3C)
      6. 7.2.6 DAC Control (Sub-Addresses 0x3D−0x40)
      7. 7.2.7 Clip/Shift/Multiplier Control (Sub-Addresses 0x41−0x4F)
      8. 7.2.8 Display Timing Generator Control, Part 2 (Sub-Addresses 0x50−0x82)
      9. 7.2.9 CGMS Control (Sub-Addresses 0x83−0x85)
    3. 7.3 THS8200 Preset Mode Line Type Definitions
      1. 7.3.1 SMPTE_274P (1080P)
      2. 7.3.2 274M Interlaced (1080I)
      3. 7.3.3 296M Progressive (720P)
      4. 7.3.4 SDTV 525 Interlaced Mode
      5. 7.3.5 SDTV 525 Progressive Mode
      6. 7.3.6 SDTV 625 Interlaced Mode
  8. Application Information
    1. 8.1 Video vs Computer Graphics Application
    2. 8.2 DVI to Analog YPbPr/RGB Application
    3. 8.3 Master vs Slave Timing Modes
  9. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
        1. 9.1.1.1 Getting Started and Next Steps
      2. 9.1.2 Device Nomenclature
    2. 9.2 Documentation Support
      1. 9.2.1 Community Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

4 Specifications

4.1 Absolute Maximum Ratings

over operating temperature range (unless otherwise noted) (1)
MIN MAX UNIT
Supply voltage range AVDD to AVSS, VDD_IO to GND_IO −0.5 4.5 V
DVDD to DVSS, VDD_DLL to DVSS −0.5 2.5 V
Digital input voltage range to DVSS −0.5 VDD_IO + 0.5 V
TA Operating free-air temperature range 0 70 °C
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

4.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature range –55 150 °C

4.3 Recommended Operating Conditions

over operating free-air temperature range, TA
MIN NOM MAX UNIT
POWER SUPPLY
Supply voltage AVDD 3 3.3 3.6 V
DVDD, VDD_DLL 1.65 1.8 2
VDD_IO 1.65 1.8 or 3.3 3.6
DIGITAL AND REFERENCE INPUTS
VIH High-level input voltage VDD_IO = 1.8 V 0.95 VDD_IO V
VDD_IO = 3.3 V 2.3 VDD_IO
VIL Low-level input voltage VDD_IO = 1.8 V DVSS 0.4 V
VDD_IO = 3.3 V DVSS 1.15
fclk Clock frequency 10 205 MHz
tw(CLKH) Pulse duration, clock high 40% 60%
tw(CLKL) Pulse duration, clock low 40% 60%
RFS FSADJ resistor VOC = 700 mV 2.99
VOC = 1 V 2.08

4.4 Power Consumption Summary

Table 4-1 Power for 700-mV DAC Output Compliance + 350-mV Bias at AVDD = 3.3 V, DVDD = 1.8 V, VDD_IO = 3.3 V, VDD_DLL = 3.3 V, 1-MHz Tone on All Channels

f (MHz) POWER (mW),
DLL BYPASSED
POWER (mW),
DLL USED
IAVDD (mA) IDVDD (mA) IVDD_IO (mA) IVDD_DLL (mA)
20 329.91 332.88 93.2 10.4 1.1 0.9
30 338.52 351.72 93.2 15 1.2 4
80 382.47 399.63 93.2 38.5 1.7 5.2
160 450.51 93.2 75.2 2.3
200 476.01 93.2 89 2.5
pwr_v_freq1_sles032.gifFigure 4-1 Power vs Frequency

Table 4-2 Power for 700-mV DAC Output Compliance + 350-mV Bias at AVDD = 3.3 V, DVDD = 1.8 V, VDD_IO = 1.8 V, VDD_DLL = 3.3 V, 1-MHz Tone on All Channels

f (MHz) POWER (mW),
DLL BYPASSED
POWER (mW),
DLL USED
IAVDD (mA) IDVDD (mA) IVDD_IO (mA) IVDD_DLL (mA)
20 328.26 331.23 93.2 10.4 1.1 0.9
30 336.72 349.92 93.2 15 1.2 4
80 379.92 397.08 93.2 38.5 1.7 5.2
160 447.06 93.2 75.2 2.3
200 472.26 93.2 89 2.5
pwr_v_freq2_sles032.gifFigure 4-2 Power vs Frequency

Table 4-3 Power for 1.25-V Output Compliance Without Bias at AVDD = 3.3 V, DVDD = 1.8 V, VDD_IO = 3.3 V, VDD_DLL = 3.3 V, 1-MHz Tone on All Channels

f (MHz) POWER (mW),
DLL BYPASSED
POWER (mW),
DLL USED
IAVDD (mA) IDVDD (mA) IVDD_IO (mA) IVDD_DLL (mA)
20 556.95 559.92 162 10.4 1.1 0.9
30 565.56 578.76 162 15 1.2 4
80 609.51 626.67 162 38.5 1.7 5.2
160 677.55 162 75.2 2.3
200 703.05 162 89 2.5
pwr_v_freq3_sles032.gifFigure 4-3 Power vs Frequency

Table 4-4 Power for 1.25-V Output Compliance Without Bias at AVDD = 3.3 V, DVDD = 1.8 V, VDD_IO = 1.8 V, VDD_DLL = 3.3 V, 1-MHz Tone on All Channels

f (MHz) POWER (mW),
DLL BYPASSED
POWER (mW),
DLL USED
IAVDD (mA) IDVDD (mA) IVDD_IO (mA) IVDD_DLL (mA)
20 555.30 558.27 162 10.4 1.1 0.9
30 563.76 576.96 162 15 1.2 4
80 606.96 624.12 162 38.5 1.7 5.2
160 674.10 162 75.2 2.3
200 699.30 162 89 2.5
pwr_v_freq4_sles032.gifFigure 4-4 Power vs Frequency

4.5 Power Supply

1-MHz FS ramp simultaneously applied to all three channels
over recommended operating conditions with fCLK = 205 MHz, RFS = RFS(nom) (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IAVDD Operating analog supply current AVDD = 3.3 V, DVDD = 1.8 V,
VDD_DLL = 1.8 V,
VDD_IO = 3.3 V,
CLK = 80 MHz
Video + no bias (700 mV) 94 98 mA
Video + bias (1.05 V) 94 98
Generic + no bias (1.25 V) 162 170
AVDD = 3.3 V, DVDD = 1.8 V,
VDD_DLL = 1.8 V
(DLL bypassed),
VDD_IO = 1.8 V,
CLK = 200 MHz
Video + no bias (700 mV) 94 98
Video + bias (1.05 V) 94 98
Generic + no bias (1.25 V) 162 170
IDVDD Operating digital supply current AVDD = 3.3 V, DVDD = 1.8 V,
VDD_DLL = 1.8 V,
VDD_IO = 3.3 V,
CLK = 80 MHz
Video + no bias (700 mV) 38 45 mA
Video + bias (1.05 V) 38 45
Generic + no bias (1.25 V) 38 45
AVDD = 3.3 V, DVDD = 1.8 V,
VDD_DLL = 1.8 V
(DLL bypassed),
VDD_IO = 1.8 V,
CLK = 200 MHz
Video + no bias (700 mV) 89 95
Video + bias (1.05 V) 89 95
Generic + no bias (1.25 V) 89 95
IVDD_IO Operating I/O supply current AVDD = 3.3 V, DVDD = 1.8 V,
VDD_DLL = 1.8 V,
VDD_IO = 3.3 V,
CLK = 80 MHz
Video + no bias (700 mV) 1.7 2.2 mA
Video + bias (1.05 V) 1.7 2.2
Generic + no bias (1.25 V) 1.7 2.2
AVDD = 3.3 V, DVDD = 1.8 V,
VDD_DLL = 1.8 V
(DLL bypassed),
VDD_IO = 1.8 V,
CLK = 200 MHz
Video + no bias (700 mV) 1.7 2.2
Video + bias (1.05 V) 1.7 2.2
Generic + no bias (1.25 V) 1.7 2.2
IVDD_DLL Operating DLL supply current AVDD = 3.3 V, DVDD = 1.8 V,
VDD_DLL = 1.8 V,
VDD_IO = 3.3 V,
CLK = 80 MHz
Video + no bias (700 mV) 4.9 5.6 mA
Video + bias (1.05 V) 4.9 5.6
Generic + no bias (1.25 V) 4.9 5.6
AVDD = 3.3 V, DVDD = 1.8 V,
VDD_DLL = 1.8 V
(DLL bypassed),
VDD_IO = 1.8 V,
CLK = 200 MHz
Video + no bias (700 mV) 4.9 5.6
Video + bias (1.05 V) 4.9 5.6
Generic + no bias (1.25 V) 4.9 5.6
PD Power disspiation AVDD = 3.3 V, DVDD = 1.8 V,
VDD_DLL = 1.8 V,
VDD_IO = 3.3 V,
CLK = 80 MHz
Video + no bias (700 mV) 398 430 mW
Video + bias (1.05 V) 398 430
Generic + no bias (1.25 V) 641 660
AVDD = 3.3 V, DVDD = 1.8 V,
VDD_DLL = 1.8 V
(DLL bypassed),
VDD_IO = 1.8 V,
CLK = 200 MHz
Video + no bias (700 mV) 489 500
Video + bias (1.05 V) 489 500
Generic + no bias (1.25 V) 700 735

4.6 Digital Inputs, DC Characteristics

over recommended operating conditions with fCLK = 205 MHz, RFS = RFS(nom) (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IIH High-level input current VDD_IO = 3.3 V,
Digital inputs and CLK at 0 V for IIL,
Digital inputs and CLK at 3.6 V for IIH
1 µA
IIL Low-level input current −1 µA
IIL(CLK) Low-level input current, CLK 1 µA
IIH(CLK) High-level input current, CLK −1 µA
CI Input capacitance TA = 25°C 5 pF
ts GY, RCr, BCb data inputs setup time VDD_IO = 1.8 V 1.5 ns
VDD_IO = 3.3 V 1.5
tH GY, RCr, BCb data inputs hold time VDD_IO = 1.8 V 0.5 ns
VDD_IO = 3.3 V 0.5
ts HS_IN, VS_IN, FID inputs setup time VDD_IO = 3.3 V (1) 1.5 ns
tH HS_IN, VS_IN, FID inputs hold time VDD_IO = 3.3 V (1) 0.5 ns
td(D) Digital process delay (2) 10-bit/20-bit 4:2:2 with CSM, CSC, 2x interpolation active 73 (3) pixels
30-bit 4:4:4 33 (3)
VESA clock mode (DLL, CSM, CSC, FIRs bypassed) 9

4.7 Analog (DAC) Outputs

over recommended operating conditions with fCLK = 205 MHz, RFS = RFS(nom) (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DAC resolution 10
(11 bit internal)
10
(11 bit internal)
bits
INL Integral nonlinearity Best-fit
VDD_IO = 3.3 V,
CLK = 500 kHz
Video (0.7 + 0.35 V bias) +0.5/-1.2 +2/-2 LSB
Generic (1.25 + 0 V bias) +1/-2.1 +5/-5
DNL Differential nonlinearity VDD_IO = 3.3 V,
CLK = 500 kHz
Video (0.7 + 0.35 V bias) +0.2/−0.3 +1/−1 LSB
Generic (1.25 + 0 V bias) +0.3/-0.5 +1/−1
PSRR Power supply ripple rejection ratio of DAC output (full scale) f = dc to 100 kHz (4) 40 42 dB
XTALK Crosstalk between channels (5) CLK = 205 MHz, -1 dB sine wave applied to active channels, offset bias applied to all channels when turned on, 37.5-Ω load on all channels 1-MHz sine wave,
offset bias off
49 dB
1-MHz sine wave,
offset bias on
42
10-MHz sine wave,
offset bias off
49
10-MHz sine wave,
offset bias on
42
30-MHz sine wave,
offset bias off
48
30-MHz sine wave,
offset bias on
40.5
KIMBAL Imbalance between DACs CLK = 80 MHz (6) ±2%
VOC DAC output compliance voltage (video only) RL = 37.5 Ω (7) Video mode (bias offset can be added) 0.7 0.72 V
Generic mode (bias offset cannot be added) 1.25 1.3
CO DAC output capacitance (pin capacitance) 5 pF
tri DAC output current rise time 10 to 90% of full scale, CLK = 80 MHz 3.5 4.2 ns
tfi DAC output current fall time 10 to 90% of full scale, CLK = 80 MHz 3.5 4.2 ns
td Analog output delay Measured from falling edge of CLKIN to 50% of full-scale transition (8) 6.5 ns
tsa Analog output settling time Measured from 50% of full scale transition on output to output settling, within 2% (9) 6.6 ns
SFDR Spurious-free dynamic range 1 MHz, −1 dB FS digital sine input -55 dB
10 MHz, −1 dB FS digital sine input -43
BW Bandwidth (3 dB) 90 MHz
Eglitch Glitch energy Full-scale code transition at 205 MSPS 25 pVs
(1) The HS_IN, VS_IN, and FID input setup and hold times are valid for 3.3-V I/O operation only. These sync inputs are not recommended for use with 1.8-V I/O logic levels.
(2) Defined as the delay on Y pixel data, starting from the rising edge of CLKIN, until the clock period.
(3) CSC contribution: 8 pixels, CSM contribution: 1 pixel, 2x interpolation filter contribution: 18 pixels
(4) PSRR is defined as 20 × log(ripple voltage at DAC output / ripple voltage at AVDD input). Limits from characterization only.
(5) Crosstalk spec applies to each possible pair of the 3 DAC outputs. Limit from characterization only.
(6) The imbalance between DACs applies to all possible pairs of the three DACs.
(7) Nominal values at RFS = RFS(nom). Limit from characterization only. Excludes bias offset.
(8) This value excludes the digital process delay, tD(D). Limit from characterization only. Data is clocked in on the rising edge of CLKIN. Analog outputs become available on the falling edge of CLKIN.
(9) Limit from characterization only.

4.8 Nonlinearity

4.8.1 Differential Nonlinearity (DNL) and Integral Nonlinearity (INL) for 700 mV Without Bias

intgrl_v_code_sles032.gifFigure 4-5 Integral Nonlinearity vs Code
diff_v_code_sles032.gifFigure 4-6 Differential Nonlinearity vs Code

4.8.2 Differential Nonlinearity (DNL) and Integral Nonlinearity (INL) for 700 mV + 350-mV Bias

intgrl_v_code2_sles032.gifFigure 4-7 Integral Nonlinearity vs Code
diff_v_code2_sles032.gifFigure 4-8 Differential Nonlinearity vs Code

4.8.3 Differential Nonlinearity (DNL) and Integral Nonlinearity (INL) for 1.25 V Without Bias

intgrl_v_code3_sles032.gifFigure 4-9 Integral Nonlinearity vs Code
diff_v_code3_sles032.gifFigure 4-10 Differential Nonlinearity vs Code

4.9 Analog Output Bandwidth (sinx/x corrected) at fS = 205 MSPS

amp_v_fo_sles032.gifFigure 4-11 Amplitude vs Output Frequency

4.10 Output Compliance vs Full-Scale Adjustment Resistor Value

vo_v_rfs_sles032.gifFigure 4-12 Output Voltage vs Full-Scale Resistance

4.11 Vertical Sync of the HDTV 1080I Format Preset in First and Second Field, and Horizontal Line Waveform Detail

out_waves_sles032.gifFigure 4-13 THS8200 Output Waveforms for 1080I: Vertical Blanking in First and Second Fields, and Active Video