SLVS581B September   2006  – June 2015 TL5209

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Typical Application Schematic
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Enable and Shutdown
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Low-Voltage Operation
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Setting the Output Voltage
        2. 9.2.2.2 Input Capacitor
        3. 9.2.2.3 Output Capacitor
        4. 9.2.2.4 Bypass Capacitor
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Community Resources
    2. 12.2 Trademarks
    3. 12.3 Electrostatic Discharge Caution
    4. 12.4 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • D|8
サーマルパッド・メカニカル・データ
発注情報

7 Specifications

7.1 Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VI Continuous input voltage –20 20 V
VO Output voltage 7.5 V
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2500 V
Charged device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

MIN MAX UNIT
VI Input voltage 2.5 16 V
VO Output voltage 6.5 V
VEN Enable input voltage 0 VI V
TJ Operating junction temperature –40 125 °C

7.4 Thermal Information

THERMAL METRIC(1) TL5209 UNIT
D [SOIC]
8 PINS
RθJA Junction-to-ambient thermal resistance 116.1 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 61.6 °C/W
RθJB Junction-to-board thermal resistance 56.3 °C/W
ψJT Junction-to-top characterization parameter 14.9 °C/W
ψJB Junction-to-board characterization parameter 55.8 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance n/a °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

VIN = VOUT + 1 V, COUT = 4.7 μF, IOUT = 1 mA, full range TJ = –40°C to 125°C
PARAMETER TEST CONDITIONS TJ MIN TYP MAX UNIT
Output voltage accuracy VOUT = 2.5 V for ADJ only 25°C –1% 1%
–40°C to 125°C –2% 2%
αVOUT Output voltage temperature coefficient –40°C to 125°C 40 ppm/°C
Line regulation VIN = (VOUT + 1 V) to 16 V 25°C 0.009 0.05 %/V
–40°C to 125°C 0.1
Load regulation IOUT = 1 mA to 500 mA(1) 25°C 0.05% 0.5%
–40°C to 125°C 0.7%
VIN – VOUT Dropout voltage(2) IOUT = 1 mA 25°C 45 60 mV
–40°C to 125°C 80
IOUT = 50 mA 25°C 115 175
–40°C to 125°C 250
IOUT = 100 mA 25°C 150 250
–40°C to 125°C 300
IOUT = 500 mA 25°C 350 500
–40°C to 125°C 600
IQ Quiescent current VEN ≥ 3 V, IOUT = 1 mA 25°C 100 140 μA
–40°C to 125°C 170
VEN ≥ 3 V, IOUT = 50 mA 25°C 350 650
–40°C to 125°C 900
VEN ≥ 3 V, IOUT = 100 mA 25°C 1.2 2 mA
–40°C to 125°C 3
VEN ≥ 3 V, IOUT = 500 mA 25°C 8 20
–40°C to 125°C 25
Imin Minimum load current(5) –40°C to 125°C 1 mA
ISD Shutdown current VEN ≤ 0.4 V 25°C 0.05 3 μA
VEN ≤ 0.18 V 25°C 0.1
–40°C to 125°C 8
Ripple rejection f = 120 Hz 25°C 75 dB
ILIMIT Current limit VOUT = 0 V 25°C 700 900 mA
–40°C to 125°C 1000
ΔVOUT/ΔPD Thermal regulation(3) VIN = 16 V, 500-mA load pulse for t = 10 ms 25°C 0.05 %/W
Vn Output noise VOUT = 2.5 V, IOUT = 50 mA, COUT = 2.2 μF, CBYP = 0 25°C 500 nV/√Hz
IOUT = 50 mA, COUT = 2.2 μF, CBYP = 470 pF(4) 25°C 300
VEN Enable logic voltage VEN = logic LOW (shutdown) 25°C 0.4 V
–40°C to 125°C 0.18
VEN = logic HIGH (enabled) 25°C 2
IEN Enable input current VEN ≤ 0.4 V (shutdown) 25°C 0.01 –1 μA
VEN ≤ 0.18 V (shutdown) –40°C to 125°C 0.01 –2
VEN ≥ 2 V (enabled) 25°C 5 20
–40°C to 125°C 25
(1) Low duty cycle testing is used to maintain the junction temperature as close to the ambient temperature as possible. Changes in output voltage due to thermal effects are covered separately by the thermal regulation specification.
(2) Dropout is defined as the input to output differential at which the output drops 2% below its nominal value measured at 1-V differential.
(3) Thermal regulation is defined as the change in output voltage at a specified time after a change in power dissipation is applied, excluding line and load regulation effects.
(4) CBYP is optional and connected to the BYP/ADJ pin.
(5) For stability across the input voltage and temperature. For ADJ versions, the minimum current can be set by R1 and R2.

7.6 Typical Characteristics

TL5209 g_psrr_freq_1ma_22uf_cb0.gifFigure 1. Power Supply Rejection Ratio
TL5209 g_psrr_freq_10ma_22uf_cb0.gifFigure 3. Power Supply Rejection Ratio
TL5209 g_psrr_freq_100ma_22uf_cb0.gifFigure 5. Power Supply Rejection Ratio
TL5209 g_psrr_vdo_1_10_100ma_cb0.gifFigure 7. Power Supply Ripple Rejection vs Voltage Drop
TL5209 g_noise_perf_1_10_100ma_22uf_cb0.gifFigure 9. Noise Performance
TL5209 g_vdo_iload.gifFigure 11. Dropout Voltage vs Load Current
TL5209 g_ignd_iload.gifFigure 13. Ground Current vs Load Current
TL5209 g_ignd_vcc_500ma.gifFigure 15. Ground Current vs Supply Voltage
TL5209 g_zo_freq_1_10_100ma_1uf.gifFigure 17. Output Impedance vs Frequency
TL5209 g_vout_vin_temps.gifFigure 19. Output Voltage vs Input Voltage
TL5209 g_line_reg.gifFigure 21. Line Regulation
TL5209 g_load_trans_1ma_100ma_22uf.gifFigure 23. Load Transient Response
TL5209 g_load_trans_100ma_500ma_10uf.gifFigure 25. Load Transient Response
TL5209 g_line_trans_1ma_22uf.gifFigure 27. Line Transient Response
TL5209 g_line_trans_100ma_22uf.gifFigure 29. Line Transient Response
TL5209 g_line_trans_500ma_22uf.gifFigure 31. Line Transient Response
TL5209 g_turn_on_1uf_500ma.gifFigure 33. Turnon Time
TL5209 g_turn_on_22uf_500ma.gifFigure 35. Turnon Time
TL5209 g_ishort_time_3p5v.gifFigure 37. Short-Circuit Current vs Time
TL5209 g_psrr_freq_1ma_22uf_cb01uf.gifFigure 2. Power Supply Rejection Ratio
TL5209 g_psrr_freq_10ma_22uf_cb01uf.gifFigure 4. Power Supply Rejection Ratio
TL5209 g_psrr_freq_100ma_22uf_cb01uf.gifFigure 6. Power Supply Rejection Ratio
TL5209 g_psrr_vdo_1_10_100ma_cb01uf.gifFigure 8. Power Supply Ripple Rejection vs Voltage Drop
TL5209 g_noise_perf_1_10_100ma_22uf_cb01uf.gifFigure 10. Noise Performance
TL5209 g_vo_ta.gifFigure 12. Output Voltage vs Temperature
TL5209 g_ignd_vcc_100ma_100ua.gifFigure 14. Ground Current vs Supply Voltage
TL5209 g_vout_il_temps.gifFigure 16. Output Voltage vs Load Current
TL5209 g_zo_freq_1_10_100ma_22uf.gifFigure 18. Output Impedance vs Frequency
TL5209 g_load_reg.gifFigure 20. Load Regulation
TL5209 g_load_trans_1ma_100ma_10uf.gifFigure 22. Load Transient Response
TL5209 g_load_trans_1ma_500ma_10uf.gifFigure 24. Load Transient Response
TL5209 g_line_trans_1ma_1uf.gifFigure 26. Line Transient Response
TL5209 g_line_trans_100ma_1uf.gifFigure 28. Line Transient Response
TL5209 g_line_trans_500ma_1uf.gifFigure 30. Line Transient Response
TL5209 g_turn_on_1uf_10ma.gifFigure 32. Turnon Time
TL5209 g_turn_on_22uf_10ma.gifFigure 34. Turnon Time
TL5209 g_isc_limit_vcc.gifFigure 36. Short-Circuit Current vs Supply Voltage
TL5209 g_ishort_time_16v.gifFigure 38. Short-Circuit Current vs Time