SLVS052I April   1988  – September 2016 TL594

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 5-V Reference Regulator
      2. 8.3.2 Undervoltage Lockout
      3. 8.3.3 Oscillator
      4. 8.3.4 Dead-Time Control
      5. 8.3.5 Comparator
      6. 8.3.6 Pulse-Width Modulation (PWM)
      7. 8.3.7 Error Amplifiers
      8. 8.3.8 Output-Control Input
      9. 8.3.9 Output Transistors
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Input Power Source
        2. 9.2.2.2 Control Circuits
          1. 9.2.2.2.1 Oscillator
          2. 9.2.2.2.2 Error Amplifier
          3. 9.2.2.2.3 Current-Limiting Amplifier
          4. 9.2.2.2.4 Soft Start
          5. 9.2.2.2.5 Setting the Dead Time
        3. 9.2.2.3 Inductor Calculations
        4. 9.2.2.4 Output Capacitance Calculations
        5. 9.2.2.5 Transistor Power-Switch Calculations
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Feedback Traces
      2. 11.1.2 Input or Output Capacitors
      3. 11.1.3 Compensation Components
      4. 11.1.4 Traces and Ground Planes
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • PW|16
  • NS|16
  • N|16
  • D|16
サーマルパッド・メカニカル・データ
発注情報

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage, VCC(2) 41 V
Amplifier input voltage VCC + 0.3 V
Collector output voltage 41 V
Collector output current 250 mA
Operating junction temperature, TJ 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values, except differential voltages, are with respect to the network ground terminal.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) 1000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) 1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

MIN MAX UNIT
VCC Supply voltage 7 40 V
VI Amplifier input voltage –0.3 VCC – 2 V
VO Collector output voltage 40 V
Collector output current (each transistor) 200 mA
Current into FEEDBACK terminal 0.3 mA
CT Timing capacitor 0.47 10000 nF
RT Timing resistor 1.8 500
fosc Oscillator frequency 1 300 kHz
TA Operating free-air temperature TL594C 0 70 °C
TL594I –40 85

6.4 Thermal Information

THERMAL METRIC(1) TL594 UNIT
D (SOIC) N (PDIP) NS (SO) PW (TSSOP)
16 PINS 16 PINS 16 PINS 16 PINS
RθJA Junction-to-ambient thermal resistance 73.5 43.5 73.6 101.5 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 32.8 30.6 30.3 29.4 °C/W
RθJB Junction-to-board thermal resistance 30.8 23.5 34.4 47.3 °C/W
ψJT Junction-to-top characterization parameter 6.1 15.3 3.4 1.4 °C/W
ψJB Junction-to-board characterization parameter 30.6 23.4 34.1 46.6 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

VCC = 15 V, over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS(1) MIN TYP(2) MAX UNIT
REFERENCE
Output voltage (REF) IO = 1 mA, TA = 25°C 4.95 5 5.05 V
Input regulation VCC = 7 V to 40 V, TA = 25°C 2 25 mV
Output regulation IO = 1 mA to 10 mA, TA = 25°C 14 35 mV
Output-voltage change with temperature ΔTA = MIN to MAX 2 10 mV/V
Short-circuit output current(3) Vref = 0 10 35 50 mA
AMPLIFIER (SEE Figure 3)
Input offset voltage, error amplifier FEEDBACK = 2.5 V 2 10 mV
Input offset current FEEDBACK = 2.5 V 25 250 nA
Input bias current FEEDBACK = 2.5 V 0.2 1 µA
Common mode input voltage, error amplifier VCC = 7 V to 40 V 0.3 to VCC – 2 V
Open-loop voltage amplification, error amplifier ΔVO = 3 V, RL = 2 kΩ, VO = 0.5 V to 3.5 V 70 95 dB
Unity-gain bandwidth VO = 0.5 V to 3.5 V, RL = 2 kΩ 800 kHz
Common mode rejection ratio, error amplifier VCC = 40 V, TA = 25°C 65 80 dB
Output sink current, FEEDBACK VID = –15 mV to –5 V, FEEDBACK = 0.5 V 0.3 0.7 mA
Output source current, FEEDBACK VID = 15 mV to 5 V, FEEDBACK = 3.5 V –2 mA
OSCILLATOR, CT = 0.01 µF, RT = 12 kΩ (SEE Figure 4)
Frequency 10 kHz
Standard deviation of frequency(4) All values of VCC, CT, RT, and TA constant 100 Hz/kHz
Frequency change with voltage VCC = 7 V to 40 V, TA = 25°C 1 Hz/kHz
Frequency change with temperature(5) ΔTA = MIN to MAX 50 Hz/kHz
DEAD-TIME CONTROL (SEE Figure 4)
Input bias current VI = 0 to 5.25 V –2 –10 µA
Maximum duty cycle, each output DTC = 0 V 0.45
Input threshold voltage Zero duty cycle 3 3.3 V
Maximum duty cycle 0
OUTPUT
Collector off-state current VC = 40 V, VE = 0 V, VCC = 40 V 2 100 µA
DTC and OUTPUT CTRL = 0 V, VC = 15 V, VE = 0 V, VCC = 1 V to 3 V 4 200
Emitter off-state current VCC = VC = 40 V, VE = 0 –100 µA
Collector-emitter saturation voltage Common emitter, VE = 0, IC = 200 mA 1.1 1.3 V
Emitter follower, VC = 15 V, IE = –200 mA 1.5 2.5
Output control input current VI = Vref 3.5 mA
PWM COMPARATOR (SEE Figure 4)
Input threshold voltage, FEEDBACK Zero duty cycle 4 4.5 V
Input sink current, FEEDBACK FEEDBACK = 0.5 V 0.3 0.7 mA
UNDERVOLTAGE LOCKOUT (SEE Figure 4)
Threshold voltage TA = 25°C 6 V
ΔTA = MIN to MAX 3.5 6.9
Hysteresis(6) 100 mV
OVERALL DEVICE
Standby supply current RT at Vref,
All other inputs and outputs open
VCC = 15 V 9 15 mA
VCC = 40 V 11 18
Average supply current DTC = 2 V, see Figure 4 12.4 mA
(1) For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
(2) All typical values, except for parameter changes with temperature, are at TA = 25°C.
(3) Duration of the short circuit must not exceed one second.
(4) Standard deviation is a measure of the statistical distribution about the mean, as derived from the formula:
TL594 eq_std_dev_lvs052.gif
(5) Temperature coefficient of timing capacitor and timing resistor is not taken into account.
(6) Hysteresis is the difference between the positive-going input threshold voltage and the negative-going input threshold voltage.

6.6 Switching Characteristics

VCC = 15 V, TA = 25°C, over recommended operating conditions (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Output-voltage rise time Common-emitter configuration (see Figure 5) 100 200 ns
Output-voltage fall time Common-emitter configuration (see Figure 5) 30 100 ns
Output-voltage rise time Emitter-follower configuration (see Figure 6) 200 400 ns
Output-voltage fall time Emitter-follower configuration (see Figure 6) 45 100 ns

6.7 Typical Characteristics

TL594 g_fo_rt_lvs052.gif
Frequency variation (Δf) is the change in oscillator frequency that occurs over the full temperature range.
Figure 1. Oscillator Frequency and Frequency Variation
vs Timing Resistance
TL594 g_av_freq_lvs052.gif
Figure 2. Amplifier Voltage Amplification
vs Frequency