JAJSEA3 December 2017 TLV2172-Q1
PRODUCTION DATA.
NOTE
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.
The TLV2172-Q1 operational amplifier provides high overall performance in a large number of general-purpose applications. As with all amplifiers, applications with noisy or high-impedance power supplies require decoupling capacitors placed close to the device pins. In most cases, 0.1-µF capacitors are adequate. Follow the additional recommendations in the Layout Guidelines section to achieve the maximum performance from this device. Many applications introduce capacitive loading to the output of the amplifier (which potentially causes instability). To stabilize the amplifier, add an isolation resistor between the amplifier output and the capacitive load. Typical Application section shows the process for selecting a resistor.
This circuit can drive capacitive loads (such as cable shields, reference buffers, MOSFET gates, and diodes). The circuit uses an isolation resistor (RISO) to stabilize the output of an operational amplifier. RISO modifies the open-loop gain of the system to ensure that the circuit has sufficient phase margin.
The design requirements are:
Figure 29 shows a unity-gain buffer driving a capacitive load. Equation 1 shows the transfer function for the circuit in Figure 29.Figure 29 does not show the open-loop output resistance of the operational amplifier (Ro).
The transfer function in Equation 1 has a pole and a zero. The frequency of the pole (fp) is determined by (Ro + RISO) and CLOAD. The RISO and CLOAD components determine the frequency of the zero (fz). A stable system is obtained by selecting RISO so that the rate of closure (ROC) between the open-loop gain (AOL) and 1/β is 20 dB per decade. Figure 30 shows the concept. The 1/β curve for a unity-gain buffer is 0 dB.
Typically, ROC stability analysis is simulated. The validity of the analysis depends on multiple factors, especially the accurate modeling of Ro. In addition to simulating the ROC, a robust stability analysis includes a measurement of overshoot percentage and AC gain peaking of the circuit using a function generator, oscilloscope, and gain and phase analyzer. Phase margin is then calculated from these measurements. Table 3 shows the overshoot percentage and AC gain peaking that correspond to phase margins of 45° and 60°. For more details on this design and other alternative devices that can replace the TLV2172-Q1, see the Capacitive Load Drive Solution Using an Isolation Resistor precision design.
PHASE MARGIN | OVERSHOOT | AC GAIN PEAKING |
---|---|---|
45° | 23.3% | 2.35 dB |
60° | 8.8% | 0.28 dB |
The values of RISO that yield phase margins of 45º and 60º for various capacitive loads are determined using the described methodology. Figure 31 shows the results.