SPNS195C February   2014  – June 2016 TMS570LC4357

PRODUCTION DATA.  

  1. Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. Revision History
  3. Device Comparison
  4. Terminal Configuration and Functions
    1. 4.1 ZWT BGA Package Ball-Map (337 Terminal Grid Array)
    2. 4.2 Terminal Functions
      1. 4.2.1 ZWT Package
        1. 4.2.1.1  Multibuffered Analog-to-Digital Converters (MibADC)
        2. 4.2.1.2  Enhanced High-End Timer Modules (N2HET)
        3. 4.2.1.3  RAM Trace Port (RTP)
        4. 4.2.1.4  Enhanced Capture Modules (eCAP)
        5. 4.2.1.5  Enhanced Quadrature Encoder Pulse Modules (eQEP)
        6. 4.2.1.6  Enhanced Pulse-Width Modulator Modules (ePWM)
        7. 4.2.1.7  Data Modification Module (DMM)
        8. 4.2.1.8  General-Purpose Input / Output (GIO)
        9. 4.2.1.9  FlexRay Interface Controller (FlexRay)
        10. 4.2.1.10 Controller Area Network Controllers (DCAN)
        11. 4.2.1.11 Local Interconnect Network Interface Module (LIN)
        12. 4.2.1.12 Standard Serial Communication Interface (SCI)
        13. 4.2.1.13 Inter-Integrated Circuit Interface Module (I2C)
        14. 4.2.1.14 Multibuffered Serial Peripheral Interface Modules (MibSPI)
        15. 4.2.1.15 Ethernet Controller
        16. 4.2.1.16 External Memory Interface (EMIF)
        17. 4.2.1.17 Embedded Trace Macrocell Interface for Cortex-R5F (ETM-R5)
        18. 4.2.1.18 System Module Interface
        19. 4.2.1.19 Clock Inputs and Outputs
        20. 4.2.1.20 Test and Debug Modules Interface
        21. 4.2.1.21 Flash Supply and Test Pads
        22. 4.2.1.22 Supply for Core Logic: 1.2-V Nominal
        23. 4.2.1.23 Supply for I/O Cells: 3.3-V Nominal
        24. 4.2.1.24 Ground Reference for All Supplies Except VCCAD
        25. 4.2.1.25 Other Supplies
      2. 4.2.2 Multiplexing
        1. 4.2.2.1 Output Multiplexing
          1. 4.2.2.1.1 Notes on Output Multiplexing
        2. 4.2.2.2 Input Multiplexing
          1. 4.2.2.2.1 Notes on Input Multiplexing
          2. 4.2.2.2.2 General Rules for Multiplexing Control Registers
  5. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Power-On Hours (POH)
    4. 5.4  Device Recommended Operating Conditions
    5. 5.5  Switching Characteristics over Recommended Operating Conditions for Clock Domains
    6. 5.6  Wait States Required - L2 Memories
    7. 5.7  Power Consumption Summary
    8. 5.8  Input/Output Electrical Characteristics Over Recommended Operating Conditions
    9. 5.9  Thermal Resistance Characteristics for the BGA Package (ZWT)
    10. 5.10 Timing and Switching Characteristics
      1. 5.10.1 Input Timings
      2. 5.10.2 Output Timings
  6. System Information and Electrical Specifications
    1. 6.1  Device Power Domains
    2. 6.2  Voltage Monitor Characteristics
      1. 6.2.1 Important Considerations
      2. 6.2.2 Voltage Monitor Operation
      3. 6.2.3 Supply Filtering
    3. 6.3  Power Sequencing and Power-On Reset
      1. 6.3.1 Power-Up Sequence
      2. 6.3.2 Power-Down Sequence
      3. 6.3.3 Power-On Reset: nPORRST
        1. 6.3.3.1 nPORRST Electrical and Timing Requirements
    4. 6.4  Warm Reset (nRST)
      1. 6.4.1 Causes of Warm Reset
      2. 6.4.2 nRST Timing Requirements
    5. 6.5  ARM Cortex-R5F CPU Information
      1. 6.5.1 Summary of ARM Cortex-R5F CPU Features
      2. 6.5.2 Dual Core Implementation
      3. 6.5.3 Duplicate Clock Tree After GCLK
      4. 6.5.4 ARM Cortex-R5F CPU Compare Module (CCM) for Safety
        1. 6.5.4.1 Signal Compare Operating Modes
          1. 6.5.4.1.1 Active Compare Lockstep Mode
          2. 6.5.4.1.2 Self-Test Mode
          3. 6.5.4.1.3 Error Forcing Mode
          4. 6.5.4.1.4 Self-Test Error Forcing Mode
        2. 6.5.4.2 Bus Inactivity Monitor
        3. 6.5.4.3 CPU Registers Initialization
      5. 6.5.5 CPU Self-Test
        1. 6.5.5.1 Application Sequence for CPU Self-Test
        2. 6.5.5.2 CPU Self-Test Clock Configuration
        3. 6.5.5.3 CPU Self-Test Coverage
      6. 6.5.6 N2HET STC / LBIST Self-Test Coverage
    6. 6.6  Clocks
      1. 6.6.1 Clock Sources
        1. 6.6.1.1 Main Oscillator
          1. 6.6.1.1.1 Timing Requirements for Main Oscillator
        2. 6.6.1.2 Low-Power Oscillator
          1. 6.6.1.2.1 Features
          2. 6.6.1.2.2 LPO Electrical and Timing Specifications
        3. 6.6.1.3 Phase-Locked Loop (PLL) Clock Modules
          1. 6.6.1.3.1 Block Diagram
          2. 6.6.1.3.2 PLL Timing Specifications
        4. 6.6.1.4 External Clock Inputs
      2. 6.6.2 Clock Domains
        1. 6.6.2.1 Clock Domain Descriptions
        2. 6.6.2.2 Mapping of Clock Domains to Device Modules
      3. 6.6.3 Special Clock Source Selection Scheme for VCLKA4_DIVR_EMAC
      4. 6.6.4 Clock Test Mode
    7. 6.7  Clock Monitoring
      1. 6.7.1 Clock Monitor Timings
      2. 6.7.2 External Clock (ECLK) Output Functionality
      3. 6.7.3 Dual Clock Comparators
        1. 6.7.3.1 Features
        2. 6.7.3.2 Mapping of DCC Clock Source Inputs
    8. 6.8  Glitch Filters
    9. 6.9  Device Memory Map
      1. 6.9.1 Memory Map Diagram
      2. 6.9.2 Memory Map Table
      3. 6.9.3 Special Consideration for CPU Access Errors Resulting in Imprecise Aborts
      4. 6.9.4 Master/Slave Access Privileges
        1. 6.9.4.1 Special Notes on Accesses to Certain Slaves
      5. 6.9.5 MasterID to PCRx
      6. 6.9.6 CPU Interconnect Subsystem SDC MMR Port
      7. 6.9.7 Parameter Overlay Module (POM) Considerations
    10. 6.10 Flash Memory
      1. 6.10.1 Flash Memory Configuration
      2. 6.10.2 Main Features of Flash Module
      3. 6.10.3 ECC Protection for Flash Accesses
      4. 6.10.4 Flash Access Speeds
      5. 6.10.5 Flash Program and Erase Timings
        1. 6.10.5.1 Flash Program and Erase Timings for Program Flash
        2. 6.10.5.2 Flash Program and Erase Timings for Data Flash
    11. 6.11 L2RAMW (Level 2 RAM Interface Module)
      1. 6.11.1 L2 SRAM Initialization
    12. 6.12 ECC / Parity Protection for Accesses to Peripheral RAMs
    13. 6.13 On-Chip SRAM Initialization and Testing
      1. 6.13.1 On-Chip SRAM Self-Test Using PBIST
        1. 6.13.1.1 Features
        2. 6.13.1.2 PBIST RAM Groups
      2. 6.13.2 On-Chip SRAM Auto Initialization
    14. 6.14 External Memory Interface (EMIF)
      1. 6.14.1 Features
      2. 6.14.2 Electrical and Timing Specifications
        1. 6.14.2.1 Read Timing (Asynchronous RAM)
        2. 6.14.2.2 Write Timing (Asynchronous RAM)
        3. 6.14.2.3 EMIF Asynchronous Memory Timing
        4. 6.14.2.4 Read Timing (Synchronous RAM)
        5. 6.14.2.5 Write Timing (Synchronous RAM)
    15. 6.15 Vectored Interrupt Manager
      1. 6.15.1 VIM Features
      2. 6.15.2 Interrupt Generation
      3. 6.15.3 Interrupt Request Assignments
    16. 6.16 ECC Error Event Monitoring and Profiling
      1. 6.16.1 EPC Module Operation
        1. 6.16.1.1 Correctable Error Handling
        2. 6.16.1.2 Uncorrectable Error Handling
    17. 6.17 DMA Controller
      1. 6.17.1 DMA Features
      2. 6.17.2 DMA Transfer Port Assignment
      3. 6.17.3 Default DMA Request Map
      4. 6.17.4 Using a GIO terminal as a DMA Request Input
    18. 6.18 Real-Time Interrupt Module
      1. 6.18.1 Features
      2. 6.18.2 Block Diagrams
      3. 6.18.3 Clock Source Options
      4. 6.18.4 Network Time Synchronization Inputs
    19. 6.19 Error Signaling Module
      1. 6.19.1 ESM Features
      2. 6.19.2 ESM Channel Assignments
    20. 6.20 Reset / Abort / Error Sources
    21. 6.21 Digital Windowed Watchdog
    22. 6.22 Debug Subsystem
      1. 6.22.1  Block Diagram
      2. 6.22.2  Debug Components Memory Map
      3. 6.22.3  Embedded Cross Trigger
      4. 6.22.4  JTAG Identification Code
      5. 6.22.5  Debug ROM
      6. 6.22.6  JTAG Scan Interface Timings
      7. 6.22.7  Advanced JTAG Security Module
      8. 6.22.8  Embedded Trace Macrocell (ETM-R5)
        1. 6.22.8.1 ETM TRACECLKIN Selection
        2. 6.22.8.2 Timing Specifications
      9. 6.22.9  RAM Trace Port (RTP)
        1. 6.22.9.1 RTP Features
        2. 6.22.9.2 Timing Specifications
      10. 6.22.10 Data Modification Module (DMM)
        1. 6.22.10.1 DMM Features
        2. 6.22.10.2 Timing Specifications
      11. 6.22.11 Boundary Scan Chain
  7. Peripheral Information and Electrical Specifications
    1. 7.1  Enhanced Translator PWM Modules (ePWM)
      1. 7.1.1 ePWM Clocking and Reset
      2. 7.1.2 Synchronization of ePWMx Time-Base Counters
      3. 7.1.3 Synchronizing all ePWM Modules to the N2HET1 Module Time Base
      4. 7.1.4 Phase-Locking the Time-Base Clocks of Multiple ePWM Modules
      5. 7.1.5 ePWM Synchronization with External Devices
      6. 7.1.6 ePWM Trip Zones
        1. 7.1.6.1 Trip Zones TZ1n, TZ2n, TZ3n
        2. 7.1.6.2 Trip Zone TZ4n
        3. 7.1.6.3 Trip Zone TZ5n
        4. 7.1.6.4 Trip Zone TZ6n
      7. 7.1.7 Triggering of ADC Start of Conversion Using ePWMx SOCA and SOCB Outputs
      8. 7.1.8 Enhanced Translator-Pulse Width Modulator (ePWMx) Electrical Data/Timing
    2. 7.2  Enhanced Capture Modules (eCAP)
      1. 7.2.1 Clock Enable Control for eCAPx Modules
      2. 7.2.2 PWM Output Capability of eCAPx
      3. 7.2.3 Input Connection to eCAPx Modules
      4. 7.2.4 Enhanced Capture Module (eCAP) Electrical Data/Timing
    3. 7.3  Enhanced Quadrature Encoder (eQEP)
      1. 7.3.1 Clock Enable Control for eQEPx Modules
      2. 7.3.2 Using eQEPx Phase Error to Trip ePWMx Outputs
      3. 7.3.3 Input Connection to eQEPx Modules
      4. 7.3.4 Enhanced Quadrature Encoder Pulse (eQEPx) Timing
    4. 7.4  12-bit Multibuffered Analog-to-Digital Converter (MibADC)
      1. 7.4.1 MibADC Features
      2. 7.4.2 Event Trigger Options
        1. 7.4.2.1 MibADC1 Event Trigger Hookup
        2. 7.4.2.2 MibADC2 Event Trigger Hookup
        3. 7.4.2.3 Controlling ADC1 and ADC2 Event Trigger Options Using SOC Output from ePWM Modules
      3. 7.4.3 ADC Electrical and Timing Specifications
      4. 7.4.4 Performance (Accuracy) Specifications
        1. 7.4.4.1 MibADC Nonlinearity Errors
        2. 7.4.4.2 MibADC Total Error
    5. 7.5  General-Purpose Input/Output
      1. 7.5.1 Features
    6. 7.6  Enhanced High-End Timer (N2HET)
      1. 7.6.1 Features
      2. 7.6.2 N2HET RAM Organization
      3. 7.6.3 Input Timing Specifications
      4. 7.6.4 N2HET1-N2HET2 Interconnections
      5. 7.6.5 N2HET Checking
        1. 7.6.5.1 Internal Monitoring
        2. 7.6.5.2 Output Monitoring using Dual Clock Comparator (DCC)
      6. 7.6.6 Disabling N2HET Outputs
      7. 7.6.7 High-End Timer Transfer Unit (HET-TU)
        1. 7.6.7.1 Features
        2. 7.6.7.2 Trigger Connections
    7. 7.7  FlexRay Interface
      1. 7.7.1 Features
      2. 7.7.2 Electrical and Timing Specifications
      3. 7.7.3 FlexRay Transfer Unit
    8. 7.8  Controller Area Network (DCAN)
      1. 7.8.1 Features
      2. 7.8.2 Electrical and Timing Specifications
    9. 7.9  Local Interconnect Network Interface (LIN)
      1. 7.9.1 LIN Features
    10. 7.10 Serial Communication Interface (SCI)
      1. 7.10.1 Features
    11. 7.11 Inter-Integrated Circuit (I2C)
      1. 7.11.1 Features
      2. 7.11.2 I2C I/O Timing Specifications
    12. 7.12 Multibuffered / Standard Serial Peripheral Interface
      1. 7.12.1 Features
      2. 7.12.2 MibSPI Transmit and Receive RAM Organization
      3. 7.12.3 MibSPI Transmit Trigger Events
        1. 7.12.3.1 MIBSPI1 Event Trigger Hookup
        2. 7.12.3.2 MIBSPI2 Event Trigger Hookup
        3. 7.12.3.3 MIBSPI3 Event Trigger Hookup
        4. 7.12.3.4 MIBSPI4 Event Trigger Hookup
        5. 7.12.3.5 MIBSPI5 Event Trigger Hookup
      4. 7.12.4 MibSPI/SPI Master Mode I/O Timing Specifications
      5. 7.12.5 SPI Slave Mode I/O Timings
    13. 7.13 Ethernet Media Access Controller
      1. 7.13.1 Ethernet MII Electrical and Timing Specifications
      2. 7.13.2 Ethernet RMII Timing
      3. 7.13.3 Management Data Input/Output (MDIO)
  8. Applications, Implementation, and Layout
    1. 8.1 TI Design or Reference Design
  9. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
      2. 9.1.2 Device and Development-Support Tool Nomenclature
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation from Texas Instruments
      2. 9.2.2 Receiving Notification of Documentation Updates
      3. 9.2.3 Community Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
    6. 9.6 Device Identification
      1. 9.6.1 Device Identification Code Register
      2. 9.6.2 Die Identification Registers
    7. 9.7 Module Certifications
      1. 9.7.1 FlexRay Certifications
      2. 9.7.2 DCAN Certification
      3. 9.7.3 LIN Certification
        1. 9.7.3.1 LIN Master Mode
        2. 9.7.3.2 LIN Slave Mode - Fixed Baud Rate
        3. 9.7.3.3 LIN Slave Mode - Adaptive Baud Rate
  10. 10Mechanical Data
    1. 10.1 Packaging Information

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • ZWT|337
サーマルパッド・メカニカル・データ
発注情報

5 Specifications

5.1 Absolute Maximum Ratings(1)

Over Operating Free-Air Temperature Range
MIN MAX UNIT
Supply voltage VCC(2) –0.3 1.43 V
VCCIO, VCCP(2) –0.3 4.6
VCCAD –0.3 6.25
Input voltage All input pins, with exception of ADC pins –0.3 4.6 V
ADC input pins –0.3 6.25
Input clamp current: IIK (VI < 0 or VI > VCCIO)
All pins, except AD1IN[31:0] and AD2IN[24:0]
–20 20 mA
IIK (VI < 0 or VI > VCCAD)
AD1IN[31:0] and AD2IN[24:0]
–10 10
Total –40 40
Operating free-air temperature (TA) –40 125 °C
Operating junction temperature (TJ) –40 150 °C
Storage temperature (Tstg) –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to their associated grounds.

5.2 ESD Ratings

MIN MAX UNIT
VESD Electrostatic discharge (ESD) performance: Human Body Model (HBM), per AEC Q100-002D(1) –2 2 kV
Charged Device Model (CDM), per AEC Q100-011 All pins except corner balls –500 500 V
Corner balls –750 750 V
(1) AEC Q100-002D indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001-2011 specification.

5.3 Power-On Hours (POH)

POH is a function of voltage and temperature. Usage at higher voltages and temperatures will result in a reduction in POH to achieve the same reliability performance. The POH information in Table 5-1 is provided solely for convenience and does not extend or modify the warranty provided under TI’s standard terms and conditions for TI Semiconductor Products. To avoid significant device degradation, the device POH must be limited to those listed in Table 5-1. To convert to equivalent POH for a specific temperature profile, see the Calculating Equivalent Power-on-Hours for Hercules Safety MCUs Application Report (SPNA207).

Table 5-1 Power-On Hours Limits

NOMINAL VCC VOLTAGE (V) JUNCTION
TEMPERATURE (TJ)
LIFETIME POH(1)
1.2 V 105 ºC 100K
(1) POH represent device operation under the specified nominal conditions continuously for the duration of the calculated lifetime.

5.4 Device Recommended Operating Conditions(1)

MIN NOM MAX UNIT
VCC Digital logic supply voltage (Core) 1.14 1.2 1.32 V
VCCPLL PLL supply voltage 1.14 1.2 1.32 V
VCCIO Digital logic supply voltage (I/O) 3 3.3 3.6 V
VCCAD MibADC supply voltage 3 5.25 V
VCCP Flash pump supply voltage 3 3.3 3.6 V
VSS Digital logic supply ground 0 V
VSSAD MibADC supply ground –0.1 0.1 V
VADREFHI Analog-to-Digital (A-to-D) high-voltage reference source VSSAD VCCAD V
VADREFLO A-to-D low-voltage reference source VSSAD VCCAD V
TA Operating free-air temperature –40 125 °C
TJ Operating junction temperature –40 150 °C
(1) All voltages are with respect to VSS, except VCCAD, which is with respect to VSSAD.

5.5 Switching Characteristics over Recommended Operating Conditions for Clock Domains

Table 5-2 Clock Domain Timing Specifications

PARAMETER TEST CONDITIONS MIN MAX UNIT
fOSC OSC - oscillator clock frequency using an external crystal 5 20 MHz
fGCLK1 GCLK - R5F CPU clock frequency 300 MHz
fGCLK2 GCLK - R5F CPU clock frequency 300 MHz
fHCLK HCLK - System clock frequency 150 MHz
fVCLK VCLK - Primary peripheral clock frequency 110 MHz
fVCLK2 VCLK2 - Secondary peripheral clock frequency 110 MHz
fVCLK3 VCLK3 - Secondary peripheral clock frequency 150 MHz
fVCLKA1 VCLKA1 - Primary asynchronous peripheral clock frequency 110 MHz
fVCLKA2 VCLKA2 - Secondary asynchronous peripheral clock frequency 110 MHz
fVCLKA4 VCLKA4 - Secondary asynchronous peripheral clock frequency 110 MHz
fRTICLK1 RTICLK1 - clock frequency fVCLK MHz
fPROG/ERASE System clock frequency - flash programming/erase fHCLK MHz
fECLK1 External Clock 1 110 MHz
fECLK2 External Clock 2 110 MHz
fETMCLKOUT ETM trace clock output 55 MHz
fETMCLKIN ETM trace clock input 110 MHz
fEXTCLKIN1 External input clock 1 110 MHz
fEXTCLKIN2 External input clock 2 110 MHz

Table 5-2 lists the maximum frequency of the CPU (GLKx), the level-2 memory (HCLK) and the peripheral clocks (VCLKx). It is not always possible to run each clock at its maximum frequency as GCLK must be an integral multiple of HCLK and HCLK must be an integral multiple of VCLKx. Depending on the system, the optimum performance may be obtained by maximizing either the CPU frequency, the level-two RAM interface, the level-two flash interface, or the peripherals.

5.6 Wait States Required - L2 Memories

Wait states are cycles the CPU must wait in order to retrieve data from the memories which have access times longer than a CPU clock. Memory wrapper, SCR interconnect and the CPU itself may introduce additional cycles of latency due to logic pipelining and synchronization. Therefore, the total latency cycles as seen by the CPU can be more than the number of wait states to cover the memory access time.

Figure 5-1 shows only the number of programmable wait states needed for L2 flash memory at different frequencies. The number of wait states is correlated to HCLK frequency. The clock ratio between CPU clock (GCLKx) and HCLK can vary. Therefore, the total number of wait states in terms of GCLKx can be obtained by taking the programmed wait states multiplied by the clock ratio.

There is no user programmable wait state for L2 SRAM access. L2 SRAM is clocked by HCLK and is limited to maximum 150 MHz.

TMS570LC4357 wait_states_150MHz_new_pns195.gif Figure 5-1 Wait States Scheme

L2 flash is clocked by HCLK and is limited to maximum 150 MHz. The L2 flash can support zero data wait state up to 45 MHz.

5.7 Power Consumption Summary

Over Recommended Operating Conditions
PARAMETER TEST CONDITIONS MIN TYP(3) MAX UNIT
ICC VCC digital supply and PLL current
(operating mode)
fGCLK = 300 MHz,
fHCLK = 150 MHz,
fVCLK = 75 MHz,
fVCLK2 = 75 MHz,
fVCLK3 = 150 MHz
510 990 (1) mA
VCC digital supply and PLL current
(LBIST mode, or PBIST mode)
LBIST clock rate = 75 MHz 880 1375(2)(4) mA
PBIST ROM clock frequency = 75 MHz
ICCIO VCCIO digital supply current (operating mode) No DC load, VCCmax 15 mA
ICCAD VCCAD supply current (operating mode) Single ADC operational, VCCADmax 15 mA
Single ADC power down, VCCADmax 5 µA
Both ADCs operational, VCCADmax 30 mA
ICCREFHI ADREFHI supply current (operating mode) Single ADC operational, ADREFHImax 5 mA
Both ADCs operational, ADREFHImax 10 mA
ICCP VCCP pump supply current Read operation of two banks in parallel, VCCPmax 70 mA
Read from two banks and program or erase another bank, VCCPmax 93 mA
(1) The maximum ICC, value can be derated
  • linearly with voltage
  • by 1.8 mA/MHz for lower GCLK frequency when fGCLK= 2 * fHCLK= 4 * fVCLK
  • for lower junction temperature by the equation below where TJK is the junction temperature in Kelvin and the result is in milliamperes.

    405 - 0.2 e0.018 TJK
(2) The maximum ICC, value can be derated
  • linearly with voltage
  • by 3.2 mA/MHz for lower GCLK frequency
  • for lower junction temperature by the equation below where TJK is the junction temperature in Kelvin and the result is in milliamperes.

    405 - 0.2 e0.018 TJK
(3) The typical value is the average current for the nominal process corner and junction temperature of 25ºC.
(4) LBIST and PBIST currents are for a short duration, typically less than 10 ms. They are usually ignored for thermal calculations for the device and the voltage regulator.

5.8 Input/Output Electrical Characteristics Over Recommended Operating Conditions(1)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Vhys Input hysteresis All inputs (except FRAYRX1, FRAYRX2) 180 mV
FRAYRX1, FRAYRX2 100 mV
VIL Low-level input voltage All inputs(2) (except FRAYRX1, FRAYRX2) –0.3 0.8 V
FRAYRX1, FRAYRX2 0.4 * VCCIO V
VIH High-level input voltage All inputs(2) (except FRAYRX1, FRAYRX2) 2 VCCIO + 0.3 V
FRAYRX1, FRAYRX2 0.6 * VCCIO V
VOL Low-level output voltage IOL = IOLmax 0.2 * VCCIO V
IOL = 50 µA, standard output mode 0.2
VOH High-level output voltage IOH = IOHmax 0.8 * VCCIO V
IOH = 50 µA, standard output mode VCCIO – 0.3
IIC Input clamp current (I/O pins) VI < VSSIO – 0.3 or VI > VCCIO + 0.3 –3.5 3.5 mA
II Input current (I/O pins) IIH Pulldown 20 µA VI = VCCIO 5 40 µA
IIH Pulldown 100 µA VI = VCCIO 40 195
IIL Pullup 20 µA VI = VSS -40 –5
IIL Pullup 100 µA VI = VSS –195 –40
All other pins No pullup or pulldown –1 1
IOL Low-level output current Pins with output buffers of 8 mA drive strength VOLmax 8 mA
Pins with output buffers of 4 mA drive strength 4
Pins with output buffers of 2 mA drive strength 2
IOH High-level output current Pins with output buffers of 8 mA drive strength VOLmin –8 mA
Pins with output buffers of 4 mA drive strength –4
Pins with output buffers of 2 mA drive strength –2
CI Input capacitance 2 pF
CO Output capacitance 3 pF
(1) Source currents (out of the device) are negative while sink currents (into the device) are positive.
(2) This does not apply to the nPORRST pin.

5.9 Thermal Resistance Characteristics for the BGA Package (ZWT)

Over operating free-air temperature range (unless otherwise noted) (1)
°C / W
JA Junction-to-free air thermal resistance, still air (includes 5×5 thermal via cluster in 2s2p PCB connected to 1st ground plane) 14.3
JB Junction-to-board thermal resistance (includes 5×5 thermal via cluster in 2s2p PCB connected to 1st ground plane) 5.49
JC Junction-to-case thermal resistance (2s0p PCB) 5.02
ΨJT Junction-to-package top, still air (includes 5×5 thermal via cluster in 2s2p PCB connected to 1st ground plane) 0.29
ΨJB Junction-to-board, still air (includes 5×5 thermal via cluster in 2s2p PCB connected to 1st ground plane) 6.41
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report SPRA953

5.10 Timing and Switching Characteristics

5.10.1 Input Timings

TMS570LC4357 ttl_inputs_pns160.gif Figure 5-2 TTL-Level Inputs

Table 5-3 Timing Requirements for Inputs(1)

MIN MAX UNIT
tpw Input minimum pulse width tc(VCLK) + 10(2) ns
tin_slew Time for input signal to go from VIL to VIH or from VIH to VIL 1 ns
(1) tc(VCLK) = peripheral VBUS clock cycle time = 1 / f(VCLK)
(2) The timing shown above is only valid for pin used in general-purpose input mode.
TMS570LC4357 flexray_inputs_spns185.gif Figure 5-3 FlexRay Inputs

Table 5-4 Timing Requirements for FlexRay Inputs(1)

MIN MAX UNIT
tpw Input minimum pulse width to meet the FlexRay sampling requirement tc(VCLKA2) + 2.5 ns
(1) tc(VCLKA2) = sample clock cycle time for FlexRay = 1 / f(VCLKA2)

5.10.2 Output Timings

Table 5-5 Switching Characteristics for Output Timings versus Load Capacitance (CL)

PARAMETER MIN MAX UNIT
Rise time, tr 8 mA low EMI pins CL = 15 pF 2.5 ns
CL = 50 pF 4
CL = 100 pF 7.2
CL = 150 pF 12.5
Fall time, tf CL = 15 pF 2.5 ns
CL = 50 pF 4
CL = 100 pF 7.2
CL = 150 pF 12.5
Rise time, tr 4 mA low EMI pins CL = 15 pF 5.6 ns
CL = 50 pF 10.4
CL = 100 pF 16.8
CL = 150 pF 23.2
Fall time, tf CL = 15 pF 5.6 ns
CL= 50 pF 10.4
CL = 100 pF 16.8
CL = 150 pF 23.2
Rise time, tr 2 mA-z low EMI pins CL = 15 pF 8 ns
CL = 50 pF 15
CL = 100 pF 23
CL = 150 pF 33
Fall time, tf CL = 15 pF 8 ns
CL = 50 pF 15
CL = 100 pF 23
CL = 150 pF 33
Rise time, tr Selectable 8mA / 2mA-z pins 8 mA mode CL = 15 pF 2.5 ns
CL = 50 pF 4
CL = 100 pF 7.2
CL = 150 pF 12.5
Fall time, tf CL = 15 pF 2.5 ns
CL = 50 pF 4
CL = 100 pF 7.2
CL = 150 pF 12.5
Rise time, tr 2 mA-z mode CL = 15 pF 8 ns
CL = 50 pF 15
CL = 100 pF 23
CL = 150 pF 33
Fall time, tf CL = 15 pF 8 ns
CL = 50 pF 15
CL = 100 pF 23
CL = 150 pF 33
TMS570LC4357 cmos_outputs_pns160.gif Figure 5-4 CMOS-Level Outputs

Table 5-6 Timing Requirements for Outputs(1)

MIN MAX UNIT
td(parallel_out) Delay between low to high, or high to low transition of general-purpose output signals that can be configured by an application in parallel, for example, all signals in a GIOA port, or all N2HET1 signals, and so forth. 6 ns
(1) This specification does not account for any output buffer drive strength differences or any external capacitive loading differences. Check for output buffer drive strength information on each signal.