SLOS759E March   2012  – December 2015 TPA3111D1-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 DC Characteristics: VCC = 24 V
    6. 6.6 DC Characteristics: VCC = 12 V
    7. 6.7 AC Characteristics: VCC = 24 V
    8. 6.8 AC Characteristics: VCC = 12 V
    9. 6.9 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 DC Detect
      2. 7.3.2 Short-Circuit Protection and Automatic Recovery Feature
      3. 7.3.3 Thermal Protection
      4. 7.3.4 GVDD Supply
    4. 7.4 Device Functional Modes
      1. 7.4.1 Gain Setting Through Gain0 and Gain1 Inputs
      2. 7.4.2 SD Operation
      3. 7.4.3 PLIMIT
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Class-D Operation
        2. 8.2.2.2  TPA3111D1-Q1 Modulation Scheme
        3. 8.2.2.3  Ferrite Bead Filter Considerations
        4. 8.2.2.4  Efficiency: LC Filter Required With the Traditional Class-D Modulation Scheme
        5. 8.2.2.5  When to Use an Output Filter for EMI Suppression
        6. 8.2.2.6  Input Resistance
        7. 8.2.2.7  Input Capacitor, CI
        8. 8.2.2.8  BSN and BSP Capacitors
        9. 8.2.2.9  Differential Inputs
        10. 8.2.2.10 Using Low-ESR Capacitors
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

デバイスごとのパッケージ図は、PDF版データシートをご参照ください。

メカニカル・データ(パッケージ|ピン)
  • PWP|28
サーマルパッド・メカニカル・データ
発注情報

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VCC Supply voltage AVCC, PVCC –0.3 30 V
VI Interface pin voltage SD, FAULT,GAIN0, GAIN1, AVCC (2) –0.3 VCC + 0.3 V V
< 10 V/ms
PLIMIT –0.3 GVDD + 0.3 V
INN, INP –0.3 6.3 V
Continuous total power dissipation See Thermal Information
RL Minimum load resistance BTL 3.2
TA Operating free-air temperature range –40 125 °C
TJ Operating junction temperature range(3) –40 150 °C
Tstg Storage temperature range –65 150 °C
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operations of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The voltage slew rate of these pins must be restricted to no more than 10 V/ms. For higher slew rates, use a 100-kΩ resistor in series with the pins, per application note SLUA626.
(3) The TPA3111D1-Q1 incorporates an exposed thermal pad on the underside of the chip. This acts as a heatsink, and it must be connected to a thermally dissipating plane for proper power dissipation. Failure to do so may result in the device going into thermal protection shutdown. See TI Technical Brief SLMA002 for more information about using the PowerPAD.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) ±4000 V
Charged-device model (CDM), per AEC Q100-011 ±250
Machine model ±200
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VCC Supply voltage PVCC, AVCC 8 26 V
VIH High-level input voltage SD, GAIN0, GAIN1 2 V
VIL Low-level input voltage SD, GAIN0, GAIN1 0.8 V
VOL Low-level output voltage FAULT, RPULLUP = 100 kΩ, VCC = 26 V 0.8 V
IIH High-level input current SD, GAIN0, GAIN1, VI = 2, VCC = 18 V 50 µA
IIL Low-level input current SD, GAIN0, GAIN1, VI = 0.8 V, VCC = 18 V 5 µA
TA Operating free-air temperature –40 125 °C

6.4 Thermal Information

THERMAL METRIC (1) TPA3111D1-Q1 UNIT
PWP (HTSSOP)
28 PINS
RθJA Junction-to-ambient thermal resistance 30.3 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 33.5 °C/W
RθJB Junction-to-board thermal resistance 17.5 °C/W
ψJT Junction-to-top characterization parameter 0.9 °C/W
ψJB Junction-to-board characterization parameter 7.2 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 0.9 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 DC Characteristics: VCC = 24 V

TA = –40°C to 125°C, RL = 8 Ω (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
| VOS | Class-D output offset voltage (measured differentially) VI = 0 V, Gain = 36 dB 1.5 15 mV
ICC Quiescent supply current SD = 2 V, no load, PVCC = 21 V 40 mA
ICC(SD) Quiescent supply current in shutdown mode SD = 0.8 V, no load, PVCC = 21 V 400 µA
rDS(on) Drain-source on-state resistance IO = 500 mA, TJ = 25°C High side 240
Low side 240
G Gain GAIN1 = 0.8 V GAIN0 = 0.8 V 19 20 21 dB
GAIN0 = 2 V 25 26 27
GAIN1 = 2 V GAIN0 = 0.8 V 31 32 33
GAIN0 = 2 V 35 36 37
tON Turnon time SD = 2 V 10 ms
tOFF Turnoff time SD = 0.8 V 2 μs
GVDD Gate drive supply IGVDD = 2 mA 6.5 6.9 7.3 V

6.6 DC Characteristics: VCC = 12 V

TA = –40°C to 125°C, RL = 8 Ω (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
| VOS | Class-D output offset voltage (measured differentially) VI = 0 V, Gain = 36 dB 1.5 15 mV
ICC Quiescent supply current SD = 2 V, no load, PVCC = 12 V 20 mA
ICC(SD) Quiescent supply current in shutdown mode SD = 0.8 V, no load, PVCC = 12 V 200 µA
rDS(on) Drain-source on-state resistance IO = 500 mA, TJ = 25°C High side 240
Low side 240
G Gain GAIN1 = 0.8 V GAIN0 = 0.8 V 19 20 21 dB
GAIN0 = 2 V 25 26 27
GAIN1 = 2 V GAIN0 = 0.8 V 31 32 33
GAIN0 = 2 V 35 36 37
tON Turnon time SD = 2 V 10 ms
tOFF Turnoff time SD = 0.8 V 2 μs
GVDD Gate drive supply IGVDD = 2 mA 6.5 6.9 7.3 V
PLIMIT Output voltage maximum under PLIMIT control VPLIMIT = 2 V; VI = 6-V differential 6.75 7.90 8.75 V

6.7 AC Characteristics: VCC = 24 V

TA = –40°C to 125°C, RL = 8 Ω (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
KSVR Power supply ripple rejection 200 mVPP ripple from 20 Hz–1 kHz,
Gain = 20 dB, inputs AC-coupled to AGND
–70 dB
PO Continuous output power THD+N ≤ 0.1%, f = 1 kHz, VCC = 24 V 10 W
THD+N Total harmonic distortion + noise VCC = 24 V, f = 1 kHz, PO = 5 W (half-power) < 0.05%
Vn Output integrated noise 20 Hz to 22 kHz, A-weighted filter, Gain = 20 dB 65 µV
–80 dBV
Crosstalk VO = 1 VRMS, Gain = 20 dB, f = 1 kHz –70 dB
SNR Signal-to-noise ratio Maximum output at THD+N < 1%, f = 1 kHz,
Gain = 20 dB, A-weighted
102 dB
fOSC Oscillator frequency 250 310 350 kHz
Thermal trip point 150 °C
Thermal hysteresis 15 °C

6.8 AC Characteristics: VCC = 12 V

TA = –40°C to 125°C, RL = 8 Ω (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
KSVR Supply ripple rejection 200 mVPP ripple from 20 Hz–1 kHz,
Gain = 20 dB, inputs AC-coupled to AGND
–70 dB
PO Continuous output power THD+N ≤ 10%, f = 1 kHz , RL = 8 Ω 10 W
PO Continuous output power THD+N ≤ 0.1%, f = 1 kHz , RL = 4 Ω 10 W
THD+N Total harmonic distortion + noise RL = 8 Ω, f = 1 kHz, PO = 5 W (half-power) < 0.06%
Vn Output integrated noise 20 Hz to 22 kHz, A-weighted filter, Gain = 20 dB 65 µV
–80 dBV
Crosstalk Po = 1 W, Gain = 20 dB, f = 1 kHz –70 dB
SNR Signal-to-noise ratio Maximum output at THD+N < 1%, f = 1 kHz,
Gain = 20 dB, A-weighted
102 dB
fOSC Oscillator frequency 250 310 350 kHz
Thermal trip point 150 °C
Thermal hysteresis 15 °C

6.9 Typical Characteristics

All measurements taken at 1 kHz, unless otherwise noted, using the TPA3110D2EVM, which is available at ti.com.
TPA3111D1-Q1 g001_los759.gif
Gain = 20 dB VCC = 12 V ZL = 8 Ω +66 µH
Figure 1. Total Harmonic Distortion vs Frequency
TPA3111D1-Q1 g003_los618.gif
Gain = 20 dB VCC = 12 V ZL = 4 Ω +33 µH
Figure 3. Total Harmonic Distortion vs Frequency
TPA3111D1-Q1 g005_los618.gif
Gain = 20 dB VCC = 24 V ZL = 8 Ω +66 µH
Figure 5. Total Harmonic Distortion + Noise vs Output Power
TPA3111D1-Q1 g007_los618.gif
Gain = 20 dB VCC = 24 V ZL = 8 Ω +66 µH
The dashed line represents thermally limited region.
Figure 7. Maximum Output Power vs PLIMIT Voltage
TPA3111D1-Q1 g009_los618.gif
Gain = 20 dB VCC = 12 V ZL = 8 Ω +66 µH
CI = 1 µF VI = 0.1 VRMS
Filter = Audio Precision AUX-0025
Figure 9. Gain/Phase vs Frequency
TPA3111D1-Q1 g013_los618.gif
Gain = 20 dB VCC = 12 V ZL = 4 Ω +33 µH
Figure 11. Efficiency vs Output Power
TPA3111D1-Q1 g015_los618.gif
Gain = 20 dB VCC = 12 V ZL = 4 Ω +33 µH
Figure 13. Supply Current vs Total Output Power
TPA3111D1-Q1 g002_los759.gif
Gain = 20 dB VCC = 24 V ZL = 8 Ω +66 µH
Figure 2. Total Harmonic Distortion vs Frequency
TPA3111D1-Q1 g004_los618.gif
Gain = 20 dB VCC = 12 V ZL = 8 Ω +66 µH
Figure 4. Total Harmonic Distortion + Noise vs Output Power
TPA3111D1-Q1 g006_los618.gif
Gain = 20 dB VCC = 12 V ZL = 4 Ω +33 µH
Figure 6. Total Harmonic Distortion + Noise vs Output Power
TPA3111D1-Q1 g008_los618.gif
Gain = 20 dB VCC = 12 V ZL = 4 Ω +33 µH
The dashed line represents thermally limited region.
Figure 8. Output Power vs PLIMIT Voltage
TPA3111D1-Q1 g012_los618.gif
Gain = 20 dB ZL = 8 Ω +66 µH
Figure 10. Efficiency vs Output Power
TPA3111D1-Q1 g014_los618.gif
Gain = 20 dB ZL = 8 Ω +66 µH
Figure 12. Supply Current vs Total Output Power
TPA3111D1-Q1 g016_los618.gif
Gain = 20 dB VCC = 12 V ZL = 8 Ω +66 µH
Figure 14. Supply Ripple Rejection Ratio vs Frequency