SLVSCT5D March   2015  – September 2016 TPS22953 , TPS22954

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics
    6. 7.6  Electrical Characteristics—VBIAS = 5 V
    7. 7.7  Electrical Characteristics—VBIAS = 3.3 V
    8. 7.8  Electrical Characteristics—VBIAS = 2.5 V
    9. 7.9  Switching Characteristics—CT = 1000 pF
    10. 7.10 Switching Characteristics—CT = 0 pF
    11. 7.11 Typical DC Characteristics
    12. 7.12 Typical Switching Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  On and Off Control (EN pin)
      2. 9.3.2  Voltage Monitoring (SNS Pin)
      3. 9.3.3  Power Good (PG Pin)
      4. 9.3.4  Supervisor Fault Detection and Automatic Restart
      5. 9.3.5  Manual Restart
      6. 9.3.6  Thermal Shutdown
      7. 9.3.7  Reverse Current Blocking (TPS22953 Only)
      8. 9.3.8  Quick Output Discharge (QOD) (TPS22954 Only)
      9. 9.3.9  VIN and VBIAS Voltage Range
      10. 9.3.10 Adjustable Rise Time (CT pin)
      11. 9.3.11 Power Sequencing
    4. 9.4 Device Functional Modes
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Input to Output Voltage Drop
      2. 10.1.2 Thermal Considerations
      3. 10.1.3 Automatic Power Sequencing
      4. 10.1.4 Monitoring a Downstream Voltage
      5. 10.1.5 Monitoring the Input Voltage
      6. 10.1.6 Break-Before-Make Power MUX (TPS22953 Only)
      7. 10.1.7 Make-Before-Break Power MUX (TPS22953 Only)
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Inrush Current
      3. 10.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Related Links
    3. 13.3 Receiving Notification of Documentation Updates
    4. 13.4 Community Resources
    5. 13.5 Trademarks
    6. 13.6 Electrostatic Discharge Caution
    7. 13.7 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

12 Layout

12.1 Layout Guidelines

  • Input and Output traces must be as short and wide as possible to accommodate for high current.
  • Use vias under the exposed thermal pad for thermal relief for high current operation.
  • The CT Capacitor must be placed as close as possible to the device to minimize parasitic trace capacitance. It is also recommended to cutout copper on other layers directly below CT to minimize parasitic capacitance.
  • The IN terminal must be bypassed to ground with low ESR ceramic bypass capacitors. The typical recommended bypass capacitance is ceramic with X5R or X7R dielectric. This capacitor must be placed as close to the device pins as possible.
  • The OUT terminal must be bypassed to ground with low ESR ceramic bypass capacitors. The typical recommended bypass capacitance is ceramic with X5R or X7R dielectric. This capacitor must be placed as close to the device pins as possible.
  • The BIAS terminal must be bypassed to ground with low ESR ceramic bypass capacitors. The typical recommended bypass capacitance is ceramic with X5R or X7R dielectric.

12.2 Layout Example

TPS22954 TPS22953 layout.gif Figure 71. Recommended Board Layout