SLVSCA1B October   2013  – August 2016 TPS2546-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Electrical Characteristics: High-Bandwidth Switch
    7. 6.7 Electrical Characteristics: Charging Controller
    8. 6.8 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Standard Downstream Port (SDP) USB 2.0/USB 3.0
      2. 8.3.2  Charging Downstream Port (CDP)
      3. 8.3.3  Dedicated Charging Port (DCP)
        1. 8.3.3.1 DCP BC1.2 and YD/T 1591-2009
        2. 8.3.3.2 DCP Divider Charging Scheme
        3. 8.3.3.3 DCP 1.2-V Charging Scheme
      4. 8.3.4  Wake on USB Feature (Mouse/Keyboard Wake Feature)
        1. 8.3.4.1 USB 2.0 Background Information
        2. 8.3.4.2 Wake On USB
        3. 8.3.4.3 USB Slow-Speed and Full-Speed Device Recognition
          1. 8.3.4.3.1 No CTL Pin Timing Requirement After Wake Event and Transition from S3 to S0
      5. 8.3.5  Load Detect
      6. 8.3.6  Power Wake
        1. 8.3.6.1 Implementing Power Wake in Notebook System
      7. 8.3.7  Port Power Management (PPM)
        1. 8.3.7.1 Benefits of PPM
        2. 8.3.7.2 PPM Details
        3. 8.3.7.3 Implementing PPM in a System with Two Charging Ports
      8. 8.3.8  Overcurrent Protection
      9. 8.3.9  FAULT Response
      10. 8.3.10 Undervoltage Lockout (UVLO)
      11. 8.3.11 Thermal Sense
    4. 8.4 Device Functional Modes
      1. 8.4.1 DCP Auto Mode
      2. 8.4.2 DCP Forced Shorted / DCP Forced Divider1
      3. 8.4.3 High-Bandwidth Data Line Switch
      4. 8.4.4 Device Truth Table (TT)
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Output Discharge
      2. 9.1.2 CDP/SDP Auto Switch
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Current-Limit Settings
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

6 Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Voltage IN, EN, ILIM_LO, ILIM_HI, FAULT, STATUS, ILIM_SEL, CTL1, CTL2, CTL3, OUT –0.3 7 V
IN to OUT –7 7
DP_IN, DM_IN, DP_OUT, DM_OUT –0.3 (IN + 0.3) or 5.7
Input clamp current DP_IN, DM_IN, DP_OUT, DM_OUT ±20 mA
Continuous current in SDP or CDP mode DP_IN to DP_OUT or DM_IN to DM_OUT ±100 mA
Continuous current in BC1.2 DCP mode DP_IN to DM_IN ±50 mA
Continuous output current OUT Internally limited
Continuous output sink current FAULT, STATUS 25 mA
Continuous output source current ILIM_LO, ILIM_HI Internally limited mA
Operating junction temperature, TJ –40 Internally limited °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) ±2000(2) V
Charged-device model (CDM), per AEC Q100-011 ±750(3)
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
(2) The passing level per AEC-Q100 Classification H2.
(3) The passing level per AEC-Q100 Classification C5.

6.3 Recommended Operating Conditions

voltages are referenced to GND (unless otherwise noted)
MIN MAX UNIT
VIN Input voltage, IN 4.5 5.5 V
Input voltage, logic-level inputs, EN, CTL1, CTL2, CTL3, ILIM_SEL 0 5.5 V
Input voltage, data line inputs, DP_IN, DM_IN, DP_OUT, DM_OUT 0 VIN V
VIH High-level input voltage, EN, CTL1, CTL2, CTL3, ILIM_SEL 1.8 V
VIL Low-level input voltage, EN, CTL1, CTL2, CTL3, ILIM_SEL 0.8 V
Continuous current, data line inputs, SDP or CDP mode, DP_IN to DP_OUT, DM_IN to DM_OUT ±30 mA
Continuous current, data line inputs, BC1.2 DCP mode, DP_IN to DM_IN ±15 mA
IOUT Continuous output current, OUT 0 2.5 A
Continuous output sink current, FAULT, STATUS 0 10 mA
RILIM_XX Current-limit set resistors 16.9 750
TJ Operating virtual junction temperature –40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) TPS2546-Q1 UNIT
RTE (WQFN)
16 PINS
RθJA Junction-to-ambient thermal resistance 53.4 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 51.4 °C/W
RθJB Junction-to-board thermal resistance 17.2 °C/W
ψJT Junction-to-top characterization parameter 3.7 °C/W
ψJB Junction-to-board characterization parameter 20.7 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 3.9 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

Unless otherwise noted: –40 ≤ TJ ≤ 125°C, 4.5 V ≤ VIN ≤ 5.5 V, VEN = VIN, VILIM_SEL = VIN, VCTL1 = VCTL2 = VCTL3 = VIN. RFAULT = RSTATUS = 10 kΩ, RILIM_HI = 20 kΩ, RILIM_LO = 80.6 kΩ. Positive currents are into pins. Typical values are at 25°C. All voltages are with respect to GND.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
POWER SWITCH
RDS(on) ON resistance(1) TJ = 25°C, IOUT = 2 A 73 84
–40°C ≤ TJ ≤ 85°C, IOUT = 2 A 73 105
–40°C ≤ TJ ≤ 125°C, IOUT = 2 A 73 120
tr OUT voltage rise time VIN = 5 V, CL = 1 µF, RL = 100 Ω (see Figure 23 and Figure 24) 0.7 1 1.6 ms
tf OUT voltage fall time 0.2 0.35 0.5
ton OUT voltage turnon time VIN = 5 V, CL = 1 µF, RL = 100 Ω (see Figure 23 and Figure 25) 2.7 4 ms
toff OUT voltage turnoff time 1.7 3
IREV Reverse leakage current VOUT = 5.5 V, VIN = VEN = 0 V, –40 ≤ TJ ≤ 85°C,
Measure IOUT
2 µA
DISCHARGE
RDCHG OUT discharge resistance 400 500 630 Ω
tDCHG_L Long OUT discharge hold time Time VOUT < 0.7 V (see Figure 26) 1.3 2 2.9 s
tDCHG_S Short OUT discharge hold time Time VOUT < 0.7 V (see Figure 26) 205 310 450 ms
EN, ILIMSEL, CTL1, CTL2, CTL3 INPUTS
Input pin rising logic threshold voltage 1 1.35 1.7 V
Input pin falling logic threshold voltage 0.85 1.15 1.45
Hysteresis(2) 200 mV
Input current Pin voltage = 0 V or 5.5 V –0.5 0.5 µA
ILIMSEL CURRENT LIMIT
IOS OUT short-circuit current limit(1) VILIM_SEL = 0 V, RILIM_LO = 210 kΩ 205 240 275 mA
VILIM_SEL = 0 V, RILIM_LO = 80.6 kΩ 575 625 680
VILIM_SEL = 0 V, RILIM_LO = 22.1 kΩ 2120 2275 2430
VILIM_SEL = VIN, RILIM_HI= 20 kΩ 2340 2510 2685
VILIM_SEL = VIN, RILIM_HI = 16.9 kΩ 2770 2970 3170
tIOS Response time to OUT short-circuit(2) VIN = 5 V, R = 0.1Ω, lead length = 2 inches
(see Figure 27)
1.5 µs
SUPPLY CURRENT
IIN_OFF Disabled IN supply current VEN = 0 V, VOUT = 0 V, –40 ≤ TJ ≤ 85°C 0.1 2 µA
IIN_ON Enabled IN supply current VCTL1 = VCTL2 = VIN, VCTL3 = 0 V, VILIM_SEL = 0 V 165 220 µA
VCTL1 = VCTL2 = VCTL3 = VIN, VILIM_SEL = 0 V 175 230
VCTL1 = VCTL2 = VIN, VCTL3 = 0 V, VILIM_SEL = VIN 185 240
VCTL1 = VCTL2 = VIN, VCTL3 = VIN, VILIM_SEL = VIN 195 250
VCTL1 = 0 V, VCTL2 = VCTL3 = VIN 215 270
UNDERVOLTAGE LOCKOUT
VUVLO IN rising UVLO threshold voltage 3.9 4.1 4.3 V
Hysteresis(2) 100 mV
FAULT
Output low voltage IFAULT = 1 mA 100 mV
OFF-state leakage VFAULT = 5.5 V 1 µA
Overcurrent FAULT rising and falling deglitch 5 8.2 12 ms
STATUS
Output low voltage ISTATUS = 1 mA 100 mV
OFF-state leakage VSTATUS = 5.5 V 1 µA
THERMAL SHUTDOWN
Thermal shutdown threshold 155 °C
Thermal shutdown threshold in current-limit 135
Hysteresis(2) 20
(1) Pulse-testing techniques maintain junction temperature close to ambient temperature; Thermal effects must be taken into account separately.
(2) These parameters are provided for reference only and do not constitute part of TI's published device specifications for purposes of TI's product warranty.

6.6 Electrical Characteristics: High-Bandwidth Switch

Unless otherwise noted: –40 ≤ TJ ≤ 125°C, 4.5 V ≤ VIN ≤ 5.5 V, VEN = VIN, VILIM_SEL = VIN, VCTL1 = VCTL2 = VCTL3 = VIN. RFAULT = RSTATUS = 10 kΩ, RILIM_HI = 20 kΩ, RILIM_LO = 80.6 kΩ. Positive currents are into pins. Typical values are at 25°C. All voltages are with respect to GND.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
HIGH-BANDWIDTH ANALOG SWITCH
DP/DM switch ON resistance VDP/DM_OUT = 0 V, IDP/DM_IN = 30 mA 2 4 Ω
VDP/DM_OUT = 2.4 V, IDP/DM_IN = –15 mA 3 6
Switch resistance mismatch between
DP / DM channels
VDP/DM_OUT = 0 V, IDP/DM_IN = 30 mA 0.05 0.15 Ω
VDP/DM_OUT = 2.4 V, IDP/DM_IN = –15 mA 0.05 0.15
DP/DM switch OFF-state capacitance(1) VEN= 0 V, VDP/DM_IN = 0.3 V, Vac = 0.6 Vpk–pk,
f = 1 MHz
3 pF
DP/DM switch ON-state capacitance(2) VDP/DM_IN = 0.3 V, Vac = 0.6 Vpk-pk, f = 1 MHz 5.4 pF
OIRR OFF-state isolation(3) VEN= 0 V, f = 250 MHz 33 dB
XTALK ON-state cross channel isolation(3) f = 250 MHz 52 dB
OFF-state leakage current VEN = 0 V, VDP/DM_IN = 3.6 V, VDP/DM_OUT = 0 V, measure IDP/DM_OUT 0.1 1.5 µA
BW Bandwidth (–3 dB)(3) RL = 50 Ω 2.6 GHz
tpd Propagation delay(3) 0.25 ns
tSK Skew between opposite transitions of the same port (tPHL – tPLH) 0.1 ns
(1) The resistance in series with the parasitic capacitance to GND is typically 250 Ω.
(2) The resistance in series with the parasitic capacitance to GND is typically 150 Ω
(3) These parameters are provided for reference only and do not constitute part of TI's published device specifications for purposes of TI's product warranty.

6.7 Electrical Characteristics: Charging Controller

Unless otherwise noted: –40 ≤ TJ ≤ 125°C, 4.5 V ≤ VIN ≤ 5.5 V, VEN = VIN, VILIM_SEL = VIN, VCTL1 = 0 V, VCTL2 = VCTL3 = VIN. RFAULT = RSTATUS = 10 kΩ, RILIM_HI = 20 kΩ, RILIM_LO = 80.6 kΩ. Positive currents are into pins. Typical values are at 25°C. All voltages are with respect to GND.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SHORTED MODE (BC1.2 DCP)
DP_IN / DM_IN shorting resistance VCTL1 = VIN, VCTL2 = VCTL3 = 0 V 125 200 Ω
1.2 V MODE
DP_IN /DM_IN output voltage VCTL1 = VIN, VCTL2 = VCTL3 = 0 V 1.19 1.25 1.31 V
DP_IN /DM_IN output impedance 60 75 94
DIVIDER1 MODE
DP_IN divider1 output voltage VCTL1 = VIN, VCTL2 = VCTL3 = 0 V 1.9 2 2.1 V
DM_IN divider1 output voltage 2.57 2.7 2.84 V
DP_IN output impedance 8 10.5 12.5
DM_IN output impedance 8 10.5 12.5
DIVIDER2 MODE
DP_IN divider2 output voltage IOUT = 1 A 2.57 2.7 2.84 V
DM_IN divider2 output voltage 1.9 2 2.1 V
DP_IN output impedance 8 10.5 12.5
DM_IN output impedance 8 10.5 12.5
CHARGING DOWNSTREAM PORT
VDM_SRC DM_IN CDP output voltage VCTL1 = VCTL2 = VCTL3 = VIN VDP_IN = 0.6 V,
–250 µA < IDM_IN < 0 µA
0.5 0.6 0.7 V
VDAT_REF DP_IN rising lower window threshold for VDM_SRC activation VCTL1 = VCTL2 = VCTL3 = VIN 0.25 0.4 V
Hysteresis(1) 50 mV
VLGC_SRC DP_IN rising upper window threshold for VDM_SRC de-activation 0.8 1 V
Hysteresis(1) 100 mV
IDP_SINK DP_IN sink current VCTL1 = VCTL2 = VCTL3 = VIN VDP_IN = 0.6 V 40 70 100 µA
LOAD DETECT – NON-POWER WAKE
ILD IOUT rising load detect current threshold VCTL1 = VCTL2 = VCTL3 = VIN 635 700 765 mA
Hysteresis(1) 50 mA
tLD_SET Load detect set time 140 200 275 ms
Load detect reset time 1.9 3 4.2 s
LOAD DETECT – POWER WAKE
IOS_PW Power wake short-circuit current limit VCTL1 = VCTL2 = 0 V, VCTL3 = VIN 32 55 78 mA
IOUT falling power wake reset current detection threshold 23 45 67 mA
Reset current hysteresis(1) 5 mA
Power wake reset time 10.7 15 20.6 s
(1) These parameters are provided for reference only and do not constitute part of Texas Instrument's published device specifications for purposes of Texas Instrument's product warranty.

6.8 Typical Characteristics

TPS2546-Q1 G001_SLVSBA6.png Figure 1. Power Switch ON Resistance vs Temperature
TPS2546-Q1 G003_SLVSBA6.png Figure 3. OUT Discharge Resistance vs Temperature
TPS2546-Q1 G005_SLVSBA6.png Figure 5. Disabled in Supply Current vs Temperature
TPS2546-Q1 G007_SLVSBA6.png Figure 7. Enabled in Supply Current - CDP vs Temperature
TPS2546-Q1 G009_SLVSBA6.png Figure 9. Status and Fault Output Low Voltage
vs Sinking Current
TPS2546-Q1 wav16_lvsag2.gif Figure 11. OFF-State Data Switch Isolation vs Frequency
TPS2546-Q1 G013_SLVSBA6.gif Figure 13. Eye Diagram Using USB Compliance Test Pattern (With No Switch)
TPS2546-Q1 G015_SLVSBA6.png Figure 15. IOUT Rising Load Detect Threshold and Out Short-Circuit Current Limit vs Temperature
TPS2546-Q1 G017_SLVSBA6.png Figure 17. Power Wake Current Limit vs Temperature
TPS2546-Q1 G022_SLVSBA6.gif Figure 19. Turnoff Response
TPS2546-Q1 G024_SLVSBA6.gif Figure 21. Device Enabled Into Short-Circuit - Thermal Cycling
TPS2546-Q1 G002_SLVSBA6.png Figure 2. Reverse Leakage Current vs Temperature
TPS2546-Q1 G004_SLVSBA6.png Figure 4. OUT Short-Circuit Current Limit vs Temperature
TPS2546-Q1 G006_SLVSBA6.png Figure 6. Enabled in Supply Current - SDP vs Temperature
TPS2546-Q1 G008_SLVSBA6.png Figure 8. Enabled in Supply Current - DCP Auto
vs Temperature
TPS2546-Q1 wav15_lvsag2.gif Figure 10. Data Transmission Characteristics vs Frequency
TPS2546-Q1 wav17_lvsag2.gif Figure 12. ON-State Cross-Channel Isolation vs Frequency
TPS2546-Q1 G014_SLVSBA6.gif Figure 14. Eye Diagram Using USB Compliance Test Pattern (With Data Switch)
TPS2546-Q1 G016_SLVSBA6.png Figure 16. Load Detect Set Time vs Temperature
TPS2546-Q1 G021_SLVSBA6.gif Figure 18. Turnon Response
TPS2546-Q1 G023_SLVSBA6.gif Figure 20. Device Enabled Into Short-Circuit
TPS2546-Q1 G025_SLVSBA6.gif Figure 22. Short-Circuit to Full Load Recovery