JAJSLY8A December   2022  – February 2024 TPS543A26

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  VIN Pins and VIN UVLO
      2. 6.3.2  Internal Linear Regulator and Bypassing
      3. 6.3.3  Enable and Adjustable UVLO
        1. 6.3.3.1 Internal Sequence of Events During Start-Up
      4. 6.3.4  Switching Frequency Selection
      5. 6.3.5  Switching Frequency Synchronization to an External Clock
        1. 6.3.5.1 Internal PWM Oscillator Frequency
        2. 6.3.5.2 Loss of Synchronization
        3. 6.3.5.3 Interfacing the SYNC/FSEL Pin
      6. 6.3.6  Remote Sense Amplifier and Adjusting the Output Voltage
      7. 6.3.7  Loop Compensation Guidelines
        1. 6.3.7.1 Output Filter Inductor Tradeoffs
        2. 6.3.7.2 Ramp Capacitor Selection
        3. 6.3.7.3 Output Capacitor Selection
        4. 6.3.7.4 Design Method for Good Transient Response
      8. 6.3.8  Soft Start and Prebiased Output Start-Up
      9. 6.3.9  MSEL Pin
      10. 6.3.10 Power Good (PG)
      11. 6.3.11 Output Overload Protection
        1. 6.3.11.1 Positive Inductor Current Protection
        2. 6.3.11.2 Negative Inductor Current Protection
      12. 6.3.12 Output Overvoltage and Undervoltage Protection
      13. 6.3.13 Overtemperature Protection
      14. 6.3.14 Output Voltage Discharge
    4. 6.4 Device Functional Modes
      1. 6.4.1 Forced Continuous-Conduction Mode
      2. 6.4.2 Discontinuous Conduction Mode During Soft Start
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Applications
      1. 7.2.1 1.0-V Output, 1-MHz Application
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
          1. 7.2.1.2.1  Custom Design With WEBENCH® Tools
          2. 7.2.1.2.2  Switching Frequency
          3. 7.2.1.2.3  Output Inductor Selection
          4. 7.2.1.2.4  Output Capacitor
          5. 7.2.1.2.5  Input Capacitor
          6. 7.2.1.2.6  Adjustable Undervoltage Lockout
          7. 7.2.1.2.7  Output Voltage Resistors Selection
          8. 7.2.1.2.8  Bootstrap Capacitor Selection
          9. 7.2.1.2.9  VDRV and VCC Capacitor Selection
          10. 7.2.1.2.10 PGOOD Pullup Resistor
          11. 7.2.1.2.11 Current Limit Selection
          12. 7.2.1.2.12 Soft-Start Time Selection
          13. 7.2.1.2.13 Ramp Selection and Control Loop Stability
          14. 7.2.1.2.14 MODE Pin
        3. 7.2.1.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
      3. 7.4.3 Thermal Performance
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
        1. 8.1.1.1 Custom Design With WEBENCH® Tools
    2. 8.2 ドキュメントの更新通知を受け取る方法
    3. 8.3 サポート・リソース
    4. 8.4 Trademarks
    5. 8.5 静電気放電に関する注意事項
    6. 8.6 用語集
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Layout Guidelines

Layout is a critical portion of good power supply design. See Figure 7-23 for a PCB layout example. Key guidelines to follow for the layout are:

  • Make VIN, PGND, and SW traces as wide as possible to reduce trace impedance and improve heat dissipation. Use vias and traces on others layers to reduce VIN and PGND trace impedance.
  • Use multiple vias near the PGND pins and use the layer directly below the device to connect them together, which helps to minimize noise and can help heat dissipation.
  • Use vias near both VIN pins and provide a low impedance connection between them through an internal layer.
  • Place a 1-μF/25-V/X6R or better dielectric ceramic capacitors from each VIN to PGND pins and place them as close as possible to the device on the same side of the PCB. Place the remaining ceramic input capacitance next to these high frequency bypass capacitors. The remaining input capacitance can be placed on the other side of the board but use as many vias as possible to minimize impedance between the capacitors and the pins of the IC.
  • Place the inductor as close as possible to the device to minimize the length of the SW node routing.
  • Place the BOOT-SW capacitor as close as possible to the BOOT and SW pins. Use a 0.1-μF/16-V/X6R or better dielectric ceramic capacitor for the BOOT capacitor.
  • Place the 2.2-μF/10-V/X6R or better dielectric ceramic capacitor as close as possible to the VDRV and PGND pins.
  • Connect 10-Ω resistor from VDRV to VCC and a 0.1-μF/10-V/X6R or better dielectric ceramic capacitor from VCC to AGND.
  • Place the bottom resistor in the FB divider as close as possible to the FB and GOSNS pins of the IC. Also keep the upper feedback resistor and the feedforward capacitor near the IC. Connect the FB divider to the output voltage at the desired point of regulation.
  • Use vias on the AGND islands on top layer to connect to AGND layer island on an internal layer. Connect the internal AGND island to PGND at one point.
  • Return the FSEL and MODE resistors to a quiet AGND island.