JAJSBM7C September   2011  – October 2017 TPS54623

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     効率と負荷電流との関係
  4. 改訂履歴
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  VIN and Power VIN Pins (VIN and PVIN)
      2. 7.3.2  Voltage Reference
      3. 7.3.3  Adjusting the Output Voltage
      4. 7.3.4  Safe Start-up into Pre-Biased Outputs
      5. 7.3.5  Error Amplifier
      6. 7.3.6  Slope Compensation
      7. 7.3.7  Enable and Adjusting Undervoltage Lockout
      8. 7.3.8  Slow Start (SS/TR)
      9. 7.3.9  Power Good (PWRGD)
      10. 7.3.10 Bootstrap Voltage (BOOT) and Low Dropout Operation
      11. 7.3.11 Sequencing (SS/TR)
      12. 7.3.12 Output Overvoltage Protection (OVP)
      13. 7.3.13 Overcurrent Protection
        1. 7.3.13.1 High-side MOSFET Overcurrent Protection
        2. 7.3.13.2 Low-side MOSFET Overcurrent Protection
      14. 7.3.14 Thermal Shutdown
      15. 7.3.15 Small Signal Model for Loop Response
      16. 7.3.16 Simple Small Signal Model for Peak Current Mode Control
      17. 7.3.17 Small Signal Model for Frequency Compensation
    4. 7.4 Device Functional Modes
      1. 7.4.1 Fixed Frequency PWM Control
      2. 7.4.2 Continuous Current Mode Operation (CCM)
      3. 7.4.3 Light Load Efficiency Operation
      4. 7.4.4 Adjustable Switching Frequency and Synchronization (RT/CLK)
        1. 7.4.4.1 Adjustable Switching Frequency (RT Mode)
        2. 7.4.4.2 Synchronization (CLK mode)
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Fast Transient Considerations
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Custom Design With WEBENCH® Tools
        2. 8.2.2.2  Operating Frequency
        3. 8.2.2.3  Output Inductor Selection
        4. 8.2.2.4  Output Capacitor Selection
        5. 8.2.2.5  Input Capacitor Selection
        6. 8.2.2.6  Slow Start Capacitor Selection
        7. 8.2.2.7  Bootstrap Capacitor Selection
        8. 8.2.2.8  Under Voltage Lockout Set Point
        9. 8.2.2.9  Output Voltage Feedback Resistor Selection
          1. 8.2.2.9.1 Minimum Output Voltage
        10. 8.2.2.10 Compensation Component Selection
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Estimated Circuit Area
    2. 10.2 Layout Examples
  11. 11デバイスおよびドキュメントのサポート
    1. 11.1 デバイス・サポート
      1. 11.1.1 デベロッパー・ネットワークの製品に関する免責事項
      2. 11.1.2 開発サポート
      3. 11.1.3 WEBENCH®ツールによるカスタム設計
    2. 11.2 ドキュメントのサポート
      1. 11.2.1 関連資料
    3. 11.3 ドキュメントの更新通知を受け取る方法
    4. 11.4 コミュニティ・リソース
    5. 11.5 商標
    6. 11.6 静電気放電に関する注意事項
    7. 11.7 Glossary
  12. 12メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Simple Small Signal Model for Peak Current Mode Control

Figure 24 is a simple small signal model that can be used to understand how to design the frequency compensation. The device power stage can be approximated to a voltage controlled current source (duty cycle modulator) supplying current to the output capacitor and load resistor. The control to output transfer function is shown in Equation 9 and consists of a dc gain, one dominant pole and one ESR zero. The quotient of the change in switch current and the change in COMP pin voltage (node c in Figure 23) is the power stage transconductance (gmps) which is 16 A/V for the device. The DC gain of the power stage is the product of gmps and the load resistance RL) as shown in Equation 10 with resistive loads. As the load current increases, the DC gain decreases. This variation with load may seem problematic at first glance, but fortunately the dominant pole moves with load current (see Equation 11). The combined effect is highlighted by the dashed line in Figure 25. As the load current decreases, the gain increases and the pole frequency lowers, keeping the 0-dB crossover frequency the same for the varying load conditions which makes it easier to design the frequency compensation.

TPS54623 peak_cur_lvs949.gifFigure 24. Simplified Small Signal Model for Peak Current Mode Control
TPS54623 f_res_lvs949.gifFigure 25. Simplified Frequency Response for Peak Current Mode Control
Equation 9. TPS54623 eq8_vout_lvs949.gif
Equation 10. TPS54623 eq9_adc_lvs949.gif
Equation 11. TPS54623 eq10_fp_lvs949.gif
Equation 12. TPS54623 eq11_fz_lvs949.gif

where

  • gmea is the GM amplifier gain (1300 μA/V)
  • gmps is the power stage gain (16 A/V)
  • RL is the load resistance
  • CO is the output capacitance
  • RESR is the equivalent series resistance of the output capacitor