JAJSBM7C September   2011  – October 2017 TPS54623

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     効率と負荷電流との関係
  4. 改訂履歴
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  VIN and Power VIN Pins (VIN and PVIN)
      2. 7.3.2  Voltage Reference
      3. 7.3.3  Adjusting the Output Voltage
      4. 7.3.4  Safe Start-up into Pre-Biased Outputs
      5. 7.3.5  Error Amplifier
      6. 7.3.6  Slope Compensation
      7. 7.3.7  Enable and Adjusting Undervoltage Lockout
      8. 7.3.8  Slow Start (SS/TR)
      9. 7.3.9  Power Good (PWRGD)
      10. 7.3.10 Bootstrap Voltage (BOOT) and Low Dropout Operation
      11. 7.3.11 Sequencing (SS/TR)
      12. 7.3.12 Output Overvoltage Protection (OVP)
      13. 7.3.13 Overcurrent Protection
        1. 7.3.13.1 High-side MOSFET Overcurrent Protection
        2. 7.3.13.2 Low-side MOSFET Overcurrent Protection
      14. 7.3.14 Thermal Shutdown
      15. 7.3.15 Small Signal Model for Loop Response
      16. 7.3.16 Simple Small Signal Model for Peak Current Mode Control
      17. 7.3.17 Small Signal Model for Frequency Compensation
    4. 7.4 Device Functional Modes
      1. 7.4.1 Fixed Frequency PWM Control
      2. 7.4.2 Continuous Current Mode Operation (CCM)
      3. 7.4.3 Light Load Efficiency Operation
      4. 7.4.4 Adjustable Switching Frequency and Synchronization (RT/CLK)
        1. 7.4.4.1 Adjustable Switching Frequency (RT Mode)
        2. 7.4.4.2 Synchronization (CLK mode)
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Fast Transient Considerations
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Custom Design With WEBENCH® Tools
        2. 8.2.2.2  Operating Frequency
        3. 8.2.2.3  Output Inductor Selection
        4. 8.2.2.4  Output Capacitor Selection
        5. 8.2.2.5  Input Capacitor Selection
        6. 8.2.2.6  Slow Start Capacitor Selection
        7. 8.2.2.7  Bootstrap Capacitor Selection
        8. 8.2.2.8  Under Voltage Lockout Set Point
        9. 8.2.2.9  Output Voltage Feedback Resistor Selection
          1. 8.2.2.9.1 Minimum Output Voltage
        10. 8.2.2.10 Compensation Component Selection
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Estimated Circuit Area
    2. 10.2 Layout Examples
  11. 11デバイスおよびドキュメントのサポート
    1. 11.1 デバイス・サポート
      1. 11.1.1 デベロッパー・ネットワークの製品に関する免責事項
      2. 11.1.2 開発サポート
      3. 11.1.3 WEBENCH®ツールによるカスタム設計
    2. 11.2 ドキュメントのサポート
      1. 11.2.1 関連資料
    3. 11.3 ドキュメントの更新通知を受け取る方法
    4. 11.4 コミュニティ・リソース
    5. 11.5 商標
    6. 11.6 静電気放電に関する注意事項
    7. 11.7 Glossary
  12. 12メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Small Signal Model for Frequency Compensation

The device uses a transconductance amplifier for the error amplifier and readily supports two of the commonly used Type II compensation circuits and a Type III frequency compensation circuit, as shown in Figure 26. In Type 2A, one additional high frequency pole, C6, is added to attenuate high frequency noise. In Type III, one additional capacitor, C11, is added to provide a phase boost at the crossover frequency. See Designing Type III Compensation for Current Mode Step-Down Converters (for a complete explanation of Type III compensation.

The design guidelines below are provided for advanced users who prefer to compensate using the general method. The below equations only apply to designs whose ESR zero is above the bandwidth of the control loop. This is usually true with ceramic output capacitors. See Typical Application for a step-by-step design procedure using higher ESR output capacitors with lower ESR zero frequencies.

TPS54623 f_compen_lvs981.gifFigure 26. Types of Frequency Compensation

The general design guidelines for device loop compensation are as follows:

  1. Determine the crossover frequency, fc. A good starting point is 1/10th of the switching frequency, fsw.
  2. R4 can be determined by Equation 13.
  3. Equation 13. TPS54623 eq12_r3_lvs981.gif

    where

    • gmea is the GM amplifier gain (1300 μA/V)
    • gmps is the power stage gain (16 A/V)
    • Vref is the reference voltage (0.6 V)
  4. Place a compensation zero at the dominant pole: TPS54623 inline1_lvs949.gif
    C4 can be determined by Equation 14.
  5. Equation 14. TPS54623 eq13_c1_lvs981.gif
  6. C6 is optional. It can be used to cancel the zero from the equivalent series resistance (ESR) of the output capacitor Co.
  7. Equation 15. TPS54623 eq14_c2_lvs981.gif
  8. Type III compensation can be implemented with the addition of one capacitor, C11. This allows for slightly higher loop bandwidths and higher phase margins. If used, C11 is calculated from Equation 16.
  9. Equation 16. TPS54623 eq36_C11_lvs981.gif