JAJSIT5D March   2020  – July 2021 TPS548A29

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Internal VCC LDO And Using External Bias On VCC Pin
      2. 7.3.2  Enable
      3. 7.3.3  Output Voltage Setting
        1. 7.3.3.1 Remote Sense
      4. 7.3.4  Internal Fixed Soft Start and External Adjustable Soft Start
      5. 7.3.5  External REFIN For Output Voltage Tracking
      6. 7.3.6  Frequency and Operation Mode Selection
      7. 7.3.7  D-CAP3 Control
      8. 7.3.8  Low-side FET Zero-Crossing
      9. 7.3.9  Current Sense and Positive Overcurrent Protection
      10. 7.3.10 Low-side FET Negative Current Limit
      11. 7.3.11 Power Good
      12. 7.3.12 Overvoltage and Undervoltage Protection
      13. 7.3.13 Out-Of-Bounds (OOB) Operation
      14. 7.3.14 Output Voltage Discharge
      15. 7.3.15 UVLO Protection
      16. 7.3.16 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Auto-Skip Eco-mode Light Load Operation
      2. 7.4.2 Forced Continuous-Conduction Mode
      3. 7.4.3 Powering The Device From A 12-V Bus
      4. 7.4.4 Powering The Device From A 3.3-V Bus
      5. 7.4.5 Powering The Device From A Split-rail Configuration
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  Output Voltage Setting Point
        2. 8.2.2.2  Choose the Switching Frequency and the Operation Mode
        3. 8.2.2.3  Choose the Inductor
        4. 8.2.2.4  Set the Current Limit (TRIP)
        5. 8.2.2.5  Choose the Output Capacitor
        6. 8.2.2.6  Choose the Input Capacitors (CIN)
        7. 8.2.2.7  Soft Start Capacitor (SS/REFIN Pin)
        8. 8.2.2.8  EN Pin Resistor Divider
        9. 8.2.2.9  VCC Bypass Capacitor
        10. 8.2.2.10 BOOT Capacitor
        11. 8.2.2.11 PGOOD Pullup Resistor
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
      1. 10.2.1 Thermal Performance On TI EVM
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 サポート・リソース
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Application Information

The TPS548A29 device is a high-efficiency, single-channel, small-sized, synchronous-buck converter. The device suits low output voltage point-of-load applications with 15-A or lower output current in server, storage, and similar computing applications. The TPS548A29 features proprietary D-CAP3 mode control combined with adaptive on-time architecture. This combination builds modern low-duty-ratio and ultra-fast load-step-response DC/DC converters in an ideal fashion. The output voltage ranges from 0.6 V to 5.5 V. The conversion input voltage ranges from 2.7 V to 16 V, and the VCC input voltage ranges from 4.75 V to 5.3 V. The D-CAP3 mode uses emulated current information to control the modulation. An advantage of this control scheme is that it does not require an external phase-compensation network, which makes the device easy-to-use and also allows for a low external component count. Another advantage of this control scheme is that it supports stable operation with all low-ESR output capacitors (such as ceramic capacitor and low-ESR polymer capacitor). Adaptive on-time control tracks the preset switching frequency over a wide range of input and output voltages while increasing switching frequency as needed during a load-step transient.